
LEARNING ON GRAPHS WITH

ROBUSTNESS, EFFICIENCY AND ADAPTABILITY

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Kaiwen Dong

Nitesh V. Chawla, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

April 2025

© Copyright by

Kaiwen Dong

2025

CC-BY-4.0

LEARNING ON GRAPHS WITH

ROBUSTNESS, EFFICIENCY AND ADAPTABILITY

Abstract

by

Kaiwen Dong

Graphs are ubiquitous data structures that capture complex relationships among

entities in real-world systems, including social networks, biological networks, trans-

portation systems, and e-commerce platforms. With the rapid growth of graph data,

numerous challenges and tasks have emerged, significantly impacting everyday life.

While Graph Neural Networks (GNNs) have become the dominant approach for ad-

dressing these challenges, they face critical limitations in robustness, efficiency, and

adaptability that restrict their broader application.

This thesis systematically addresses these limitations to develop more powerful

GNN models. To improve robustness, this thesis investigates GNNs from both model

and data perspectives. On the model side, it identifies dataset shift as a fundamen-

tal issue and proposes a corresponding solution. On the data side, it introduces a

data augmentation method to generate predictive and concise graph representations.

To enhance efficiency, the thesis presents techniques that improve GNN expressive-

ness through efficient graph structural estimation. Additionally, it proposes a novel

training paradigm that bypasses the conventional gradient descent process, allowing

GNNs to fit directly to data. To improve adaptability, the thesis explores methods for

GNNs to generalize to new data and tasks. Specifically, it introduces a framework for

link prediction that can adapt to arbitrary graphs during inference. Furthermore, it

Kaiwen Dong

develops a practical application of GNNs for predictive tasks in relational databases.

By addressing these limitations, this thesis advances the robustness, efficiency, and

adaptability of GNNs, expanding their applicability in diverse real-world scenarios.

To my family.

ii

CONTENTS

Figures . ix

Tables . xiii

Acknowledgments . xv

Chapter 1: Introduction . 1

Part I: Robust GNNs . 8

Chapter 2: Robust GNNs by alleviating dataset shift 9
2.1 Overview . 9
2.2 Introduction . 9
2.3 Related work . 12
2.4 A proposed unified framework for link prediction 14

2.4.1 Preliminary . 14
2.4.2 Subgraph link prediction . 15

2.5 FakeEdge: Mitigates dataset shift in subgraph link prediction 17
2.5.1 Dataset shift . 18
2.5.2 Proposed methods . 20
2.5.3 Expressive power of structural representation 21

2.6 Experiments . 23
2.6.1 Experimental setup . 23
2.6.2 Results . 25
2.6.3 Further discussions . 27
2.6.4 Distribution gap between the training and testing 27
2.6.5 Dataset shift with deeper GNNs 29
2.6.6 Heuristic methods with FakeEdge 30

2.7 Conclusion . 31

Chapter 3: Robust GNNs by data augmentation 32
3.1 Overview . 32
3.2 Introduction . 32
3.3 Preliminary . 35
3.4 Proposed framework: CORE . 37

iii

3.4.1 Complete stage: inflating missing connections 37
3.4.2 Reduce stage: pruning noisy edges 39
3.4.3 Implementation of the Reduce stage. 43
3.4.4 Theoretical analysis . 45

3.5 Experiments . 46
3.5.1 Experimental setup . 46
3.5.2 Experimental results . 48
3.5.3 Different DAs for different target links 51
3.5.4 Additional ablation studies . 52

3.6 Conclusion . 52

Part II: Efficient GNNs . 55

Chapter 4: Efficient link-level representation with node-level complexity . . . 56
4.1 Overview . 56
4.2 Introduction . 57
4.3 Preliminaries and Related Work . 59
4.4 Can Message Passing count Common Neighbor? 62

4.4.1 Estimation via Mean Squared Error Regression 63
4.4.2 Estimation capabilities of GNNs for link predictors 64
4.4.3 Multi-layer message passing 67

4.5 Method . 68
4.5.1 QO vectors construction . 69
4.5.2 Structural feature estimations 71
4.5.3 More scalable estimation . 73

4.6 Experiments . 74
4.6.1 Datasets, baselines and experimental setup 75
4.6.2 Results . 76
4.6.3 Model size and inference time 77
4.6.4 Estimation accuracy . 77
4.6.5 Extended ablation studies . 78

4.7 Conclusion . 78

Chapter 5: Efficient GNNs without gradient descent optimization 79
5.1 Overview . 79
5.2 Introduction . 79
5.3 Preliminaries and Related Work . 82
5.4 Unpacking What GNNs Learn on Text-Attributed Graphs 84

5.4.1 Quasi-orthogonal node attributes 85
5.4.2 What SGC learns . 86
5.4.3 What GCN learns . 87

5.5 Method . 89
5.5.1 Building the Weight Matrix 90
5.5.2 A View from Linear Regressions 92

iv

5.6 Experiments . 94
5.6.1 Experimental setups . 94
5.6.2 Results . 97
5.6.3 Trained vs Trainless weight matrix 99
5.6.4 Varying attribute dimensions 99
5.6.5 Beyond homophilous graphs 101
5.6.6 Training efficiency . 101

5.7 Conclusion . 102

Part III: Adaptable GNNs . 103

Chapter 6: Adapting pretrained GNNs to new graph 104
6.1 Overview . 104
6.2 Introduction . 105
6.3 Can one model fit all? . 108

6.3.1 Empirical evaluation on transferability 109
6.3.2 Conflicting patterns across graphs 110
6.3.3 Contextualizing Link Prediction 113

6.4 Universal Link Predictor . 114
6.4.1 Query and in-context links . 115
6.4.2 Encoding ego-subgraphs . 116
6.4.3 Link prediction with context 117
6.4.4 Pretraining objective . 119

6.5 Related work . 119
6.6 Experiments . 120

6.6.1 Experimental setup . 120
6.6.2 Primary results . 122
6.6.3 The inner mechanism of UniLP 123
6.6.4 Effectiveness of in-context links’ size 124
6.6.5 Visualization of the link representation 126
6.6.6 Synthetic graphs . 128
6.6.7 Diversifying context . 129
6.6.8 Varying positive-to-negative ratios of in-context links 130

6.7 Conclusion . 131

Chapter 7: Adapting GNNs to relational database 133
7.1 Overview . 133
7.2 Introduction . 134

7.2.1 Problem statement . 135
7.2.2 Related Works . 136
7.2.3 Challenges and Contributions 137

7.3 Txn-Bert: Text Encoder trained from scratch 138
7.3.1 Unique Linguistic Characteristics of Transaction Data 139
7.3.2 Training the tokenizer . 139

v

7.3.3 Training the transformer model 141
7.4 Rel-Cat: Modeling relations within database 143

7.4.1 Build a heterogeneous graph from a relational database 143
7.4.1.1 Conversion overview 143

7.4.2 Conversion details . 145
7.4.2.1 Transform to a link prediction task 146

7.4.3 Model the heterogeneous graph 147
7.4.3.1 Two-hop connections for transaction nodes 147

7.4.4 Training objective . 149
7.4.4.1 Weighted negative sampling 150
7.4.4.2 Distribution shift mitigation 150

7.4.5 Scalability and practical designs 151
7.4.5.1 Reducing neighborhood size 151
7.4.5.2 Top K Nearest Neighbor 153

7.5 Experiments . 154
7.5.1 Experimental setup . 154

7.5.1.1 Dataset . 154
7.5.1.2 Experimental settings 154

7.5.2 Results . 155
7.5.3 Ablation Studies . 156
7.5.4 Seen vs Unseen Category in a Company’s history 157

7.5.4.1 Time complexity . 159
7.6 Conclusion . 159

Chapter 8: Conclusion and future directions 161

Appendix A: FakeEdge: Alleviate Dataset Shift in Link Prediction 165
A.1 Proof of Theorem 1 . 165
A.2 Proof of Theorem 2 . 166
A.3 Details about the baseline methods 167
A.4 Benchmark dataset descriptions . 168
A.5 Results measured by Hits@20 and statistical significance of results . . 169
A.6 FakeEdge with extremely sparse graphs 171
A.7 Concatenation as another valid Edge Invariant subgraph embedding . 173
A.8 Dataset shift vs expressiveness: which contributes more with FakeEdge?174
A.9 Limitation . 174

Appendix B: CORE: Data Augmentation for Link Prediction via Information
Bottleneck . 176
B.1 Related works . 176

B.1.1 Comparison to GSAT . 178
B.2 Implementation details . 180

B.2.1 Marginal distribution . 180
B.2.2 Awareness of edges scores from the Complete stage 181

vi

B.2.3 Augmentation during inference 181
B.2.4 Nodewise sampling . 181
B.2.5 Hyperparameter details . 182
B.2.6 Software and hardware details 182
B.2.7 Time complexity . 182

B.3 Supplementary experiments . 183
B.3.1 Baseline methods . 183
B.3.2 Benchmark datasets . 184
B.3.3 More ablation study . 185
B.3.4 Parameter sensitivity . 186
B.3.5 CORE with GCN and SAGE as backbones 189
B.3.6 Complete stage only considering node pairs with common neigh-

bors . 189
B.4 Variational bounds for the GIB objective in Equation 3.4 and Equa-

tion 3.5 . 189
B.5 Proof for Theorem 3 . 190
B.6 Limitations . 192

Appendix C: Pure Message Passing Can Estimate Common Neighbor for Link
Prediction . 195
C.1 Efficient inference at node-level complexity 195
C.2 Estimate triangular substructures . 195

C.2.1 Method . 196
C.2.2 Experiments . 196

C.3 Experimental details . 199
C.3.1 Benchmark datasets . 199
C.3.2 More details in baseline methods 201
C.3.3 Evaluation Details: Inference Time 202
C.3.4 Software and hardware details 202
C.3.5 Time Complexity . 202
C.3.6 Hyperparameters . 203

C.4 Exploring Bag-Of-Words Node Attributes 204
C.4.1 Node Attribute Orthogonality 204
C.4.2 Role of Node Attribute Information 206
C.4.3 Expanding QO Vector Dimensions 208

C.5 Additional experiments . 208
C.5.1 Node label estimation accuracy and time 208
C.5.2 Model enhancement ablation 210
C.5.3 Structural features ablation 212
C.5.4 Parameter sensitivity . 212

C.6 Theoretical analysis . 213
C.6.1 Proof for Theorem 4 . 213
C.6.2 Proof for Theorem 5 . 215
C.6.3 Proof for Theorem 6 . 218

vii

C.7 Limitations . 219

Appendix D: You do not have to train Graph Neural Networks at all on text-
attributed graphs . 224
D.1 More strategical design . 224
D.2 Supplementary experiments . 226

D.2.1 Statistics of benchmark datasets 226
D.2.2 Baseline model details . 227
D.2.3 Software and hardware details 228
D.2.4 Hyperparameter selections . 229
D.2.5 Parameter Sensitivity . 229
D.2.6 Experimental details on heterophilous graphs 230

D.3 Limitations . 231

Appendix E: Universal Link Predictor By In-Context Learning on Graphs . . 232
E.1 Experimental details . 232

E.1.1 Pretrain and test benchmarks 232
E.1.2 Pretraining the Models . 233
E.1.3 Software and hardware details 233

E.2 Theoretical analysis . 234
E.2.1 More discussions about the connectivity patterns 234
E.2.2 Proof for Theorem 7 . 234

Appendix F: Adapting GNNs to Relational Database 237
F.1 Technical details . 237

F.1.1 Txn-Bert configuration . 237
F.1.2 Inference . 237
F.1.3 Software and Hardware details 238

F.2 Supplementary experiments . 238
F.2.1 Prediction cascade . 238

Bibliography . 240

viii

FIGURES

1.1 Overview of this thesis research. We explore three aspects to enhance
GNN’s capability on graph applications: robustness, efficiency, and
adaptability. 2

2.1 1-WL test is performed to exhibit the learning process of GNNs. Two
node pairs (denoted as bold black circles) and their surrounding sub-
graphs are sampled from the graph as a training (top) and testing
(bottom) instance respectively. Two subgraphs are isomorphic when
we omit the focal links. One iteration of 1-WL assigns different colors,
indicating the occurrence of dataset shift. 11

2.2 The proposed four FakeEdge methods. In general, FakeEdge encour-
ages the link prediction model to learn the subgraph representation by
always deliberately adding or removing the edges at the focal node pair
in each subgraph. In this way, FakeEdge can reduce the distribution
gap of the learned subgraph representation between the training and
testing set. 19

2.3 Given two isomorphic but non-overlapping subgraphs A and B, GNNs
learn the same representation for the nodes u and v. Hence, GNN-
based methods cannot distinguish focal node pairs {u,w} and {v, w}.
However, by adding a FakeEdge at {u,w} (shown as the dashed line
in the figure), it can break the tie of the representation for u and v,
thanks to u’s modified neighborhood. 22

2.4 Distribution gap (AUC) of the positive samples between the training
and testing set. 28

3.1 Overview of our CORE framework. It consists of two stages: (1) the
Complete stage, which aims to recover missing edges by incorporat-
ing highly probable edges into the original graph, and (2) the Reduce
stage, which is the core component of our method, designed to prune
noisy edges from the graph in order to prevent overfitting on the in-
trinsic noise and that introduced by the Complete stage. Recognizing
that predicting different links may require distinct augmentations, we
extract the surrounding subgraph of each link and apply independent
augmentations accordingly. In the social network example illustrated,
assuming that Adams and Terry will become friends while Adams and
Henry will not, tailored augmentations can facilitate more accurate
link prediction by the model. 35

ix

3.2 The Reduce stage commences with the inflated subgraph G+
(i,j) sur-

rounding the target link (i, j). We first apply a GNN to encode node
representations, followed by edge representation derived from the node
encodings. To compute sampling probability scores for each edge, we
utilize an attention mechanism that combines the edge representation
with the subgraph pooling. Since the subgraph pooling encapsulates
information from the entire subgraph and is employed for target link
prediction, the generated probability scores reflect not only the edge’s
inherent property but also its relationship to the target link (i, j). Sub-
sequently, we sample each edge using a Bernoulli distribution based on
its probability to obtain the pruned graph. Finally, the pruned graph
G±

(i,j) is fed back into the model as augmented input for enhanced graph
structures. 40

3.3 CORE can enhance the graph structure and even boost heuristics link
predictors (Hits@50). 48

3.4 Histogram representing the standard deviations (std) of the learned
edge mask ω for each edge within subgraphs associated with different
target links. The frequent occurrence of larger std values implies sub-
stantial disagreement on the optimal DAs when focusing on different
target links. 51

4.1 Isomorphic nodes result in identical MPNN node representation, mak-
ing it impossible to distinguish links such as (v1, v3) and (v1, v5) based
on these representations. 58

4.2 MPNN counts Common Neighbor through the inner product of neigh-
boring nodes’ one-hot representation. 58

4.3 GNNs estimate CN, AA and RA via MSE regression, using the mean
value as a Baseline. Lower values are better. 63

4.4 Representation of the target link (u, v) within our model (MPLP),
with nodes color-coded based on their distance from the target link. . 69

4.5 Evaluation of model size and inference time on Collab. The inference
time encompasses the entire cycle within a single epoch. 76

5.1 Heatmap of the inner product of node attributes on TAG. 85
5.2 Heatmap depicting the evolution of inner products between node at-

tributes and the weight vectors across various training epochs on the
Cora dataset. 87

5.3 Heatmap depicting the evolution of inner products between node repre-
sentations from GCN’s first layer and the second layer’s weight vectors
across various training epochs on the Cora dataset. 89

x

5.4 This figure outlines the process for obtaining the weight matrix W in
TrainlessGNN. Initially, virtual label nodes are added for each class
label. These nodes are then connected to labeled nodes sharing the
same class, depicted by green lines. Additionally, virtual label nodes
are connected to all other labeled nodes, represented by red lines, with
an assigned edge weight ω. A single round of message passing updates
the representation of the virtual label nodes, providing the desired
weight matrix W. 90

5.5 Training loss landscape while training SGC on Citeseer. The red star
(⋆) denotes Trainless SGC. 96

5.6 Training accuracy landscape while training SGC on Citeseer. The red
star (⋆) denotes Trainless SGC. 97

5.7 Testing accuracy landscape while training SGC on Citeseer. The red
star (⋆) denotes Trainless SGC. 98

5.8 Performance comparison betweenTrainless Linear and Linear across
varying attribute dimensions and textual encodings, with a consistent
training set of 20 labeled nodes. Attribute dimensions greater than 20
(i.e., d > 20) represent an over-parameterization regime. 100

5.9 Performance of our methods on heterophilous graphs. 101

6.1 Performance change of SEAL [178] after training with one additional

graph. Adenotes statistically significant change. 110
6.2 Two synthetic graphs with different connectivity patterns: (a) Grid

lattice graph; (b) Triangular lattice graph. 112
6.3 Overview of the Universal Link Predictor framework. (a) For predict-

ing a query link q, we initially sample positive (s+) and negative (s−)
in-context links from the target graph. Both the query link and these
in-context links are independently processed through a shared sub-
graph GNN encoder. An attention mechanism then calculates scores
based on the similarity between the query link and the in-context links.
(b) The final representation of the query link, contextualized by the
target graph, is obtained through a weighted summation, which com-
bines the representations of the in-context links with their respective
labels. 114

6.4 Performance of UniLP with varying quantities of in-context links. . . 125
6.5 Visualization of the link representation from Pretrain Only SEAL.

Different colors indicate different test datasets. 126
6.6 Visualization of the link representation from UniLP. Different colors

indicate different test datasets. 127
6.7 Diverse sets of in-context links on LP performance. 129
6.8 Influence of positive-to-negative in-context link ratios on LP perfor-

mance. 131

7.1 The schema of the relational database of QuickBooks transactions. . . 134

xi

7.2 Tokenization of transactions by BERT and Txn-Bert. Bert tokenizer
tends to split business entity names to sub-tokens, while Txn-Bert

tokenizer can keep them complete. 140
7.3 Txn-Bert can tokenize transactions into fewer tokens. 140
7.4 Training paradigm of Txn-Bert. 141
7.5 The overview pipeline of Rel-Cat. 144
7.6 Transformation of a relational database into a heterogeneous graph for

transaction categorization. (a) A new transaction enters the system
without a foreign key connection to the Category table. (b) The het-
erogeneous graph is built from the relational database, where transac-
tion categorization is formulated as a link prediction task. (c) Two-hop
connections for transaction nodes mitigate over-squashing and improve
model expressiveness. 146

B.1 CORE can improve LP performance in various hyperparameter set-
tings measured by Hits@50. Warmer colors indicate improved perfor-
mance over the baseline, whereas cooler colors signify the contrary. . 187

C.1 Representation of the target link (u, v) of MPLP after including the
triangular estimation component. 198

C.2 Heatmap illustrating the inner product of node attributes across CS,
Photo, and Collab datasets. 205

C.3 Heatmap illustrating the inner product of node attributes, arranged
by node labels, across CS and Photo. The rightmost showcases the
inner product of QO vectors. 205

C.4 MSE of estimation for #(1, 1), #(1, 2) and #(1, 0) on Collab. Lower
values are better. 208

C.5 MSE of estimation for #(2, 2), #(2, 0) and estimation time on Collab.
Lower values are better. 209

D.1 Training efficiency of TrainlessGNN compared to the traditional gra-
dient descent optimizations. 226

D.2 Parameter sensitivity analysis for degree normalization matrix R and
edge weight ω using the Trainless SGC model. 230

D.3 Performance of our methods on heterophilous graphs. ∗ indicates the
models trained with training and validation labels. 231

E.1 Performance of UniLP with varying quantities of in-context links on
the rest of graph datasets. 232

F.1 Cascade Process in Rel-Cat. TopK NN efficiently resolves over 68%
of transactions when only a Top 1 prediction is needed. However,
for more comprehensive Top 5 predictions, over 96% of transactions
necessitate processing by GNNs. 239

xii

TABLES

2.1 Comparison with and without FakeEdge. 24

2.2 GIN’s performance improvement. 29

2.3 FakeEdge on Heuristic methods. 31

3.1 Link prediction performance. 47

3.2 Results of adversarial robustness. 53

3.3 Ablation study. 54

4.1 Link prediction results on non-attributed benchmarks. 74

4.2 Link prediction results on attributed benchmarks. 75

5.1 Comparison of accuracy. 88

5.2 Results of semi-supervised node classification on benchmark datasets. 95

6.1 Link prediction results. 122
6.2 Link prediction results under context perturbation. 124

6.3 Link prediction results on synthetic graphs. 128

7.1 Transaction categorization evaluated by accuracy under Zero Shot and
Few Shot settings. 155

7.2 Performance breakdown in different scenarios. 158

7.3 Inference times for 1, 000 transactions. 159

A.1 Statistics of link prediction datasets. 169

A.2 Comparison with and without FakeEdge (Hits@20). 170

A.3 p-values by comparing AUC scores with Original and Edge Att. . . . 171

A.4 Model performance with only 20% training data (AUC). 172

A.5 Comparison for concatenation operation (AUC) 173

B.1 Statistics of benchmark datasets. 186

B.2 Results of adversarial robustness. 188

B.3 Ablation study evaluated by Hits@50. 188

B.4 CORE with GCN and SAGE as backbone models. 193

xiii

B.5 Number of node pairs with at least one common neighbor as a positive
instance in the testing sets. 194

C.1 Performance of different GNNs on learning the counts of triangles. . . 197

C.2 Statistics of benchmark datasets. 199

C.3 Performance comparison of GNNs using node attributes versus random
vectors (Hits@50). 207

C.4 Ablation study on non-attributed benchmarks evaluated by Hits@50. 210

C.5 Ablation study on attributed benchmarks evaluated by Hits@50. . . . 211

C.6 The mapping between the configuration number and the used struc-
tural features in MPLP. 220

C.7 Ablation analysis on structural features. 221

C.8 Ablation study of Batch Size (B) on non-attributed benchmarks eval-
uated by Hits@50. 222

C.9 Ablation study of Batch Size (B) on attributed benchmarks evaluated
by Hits@50. 222

C.10 Ablation study of Node Signature Dimension (F) on non-attributed
benchmarks evaluated by Hits@50. 223

C.11 Ablation study of Node Signature Dimension (F) on attributed bench-
marks evaluated by Hits@50. 223

D.1 The statistics of the benchmark datasets. 227

E.1 The pretrain datasets and test benchmarks. 236

xiv

ACKNOWLEDGMENTS

First and foremost, I would like to express my greatest gratitude to my advi-

sor, Dr. Nitesh V. Chawla, for his exceptional supervision and continuous support

throughout my Ph.D. journey. His expertise in machine learning and data science,

his vision for innovative research, and his passion for discovery have been a constant

source of motivation. I am especially grateful that he encouraged me to approach ma-

chine learning problems not only from the perspective of an engineer in the industry

but also from a more fundamental viewpoint as a research scholar. I deeply appre-

ciate the tremendous freedom he granted me to pursue my interests within graph

machine learning. I am also sincerely thankful for his understanding and support

for my travels and remote work, which allowed my family to stay together during

important moments in our lives. Beyond academics, his thoughtful guidance and

warm personality have been invaluable in shaping my personal growth and career

development. This dissertation would not have been possible without his steadfast

mentorship.

I would like to sincerely thank my thesis committee members, Dr. Xiangliang

Zhang, Dr. Meng Jiang, and Dr. Fanny Ye, for serving on my committee. Dr. Zhang

encouraged me to look beyond established work and consider the future potential

of my research. Dr. Jiang provided detailed comments on my thesis writing, which

helped improve its clarity and quality. Dr. Ye offered many insightful suggestions

that helped refine the direction of my study. I am truly grateful for their time,

support, and contributions to the development of this dissertation.

In addition, I extend my deepest gratitude to my internship mentors, Dr. Kama-

xv

lika Das and Dr. Xiang Gao, at Intuit. Dr. Das has influenced my understanding of

how to conduct research that contributes both theoretically and has practical merit

in real-world applications. She also provided me the opportunity to carry out re-

search that made a direct impact in production. Dr. Gao guided me in exploring my

research interests and developing my professional career. The discussions I shared

with them have had a profound impact on me, both personally and professionally.

Furthermore, I want to thank my amazing collaborators: Nitesh Chawla, Zhichun

Guo, Kamalika Das, Xiang Gao, Haitao Mao, Yijun Tian, Padmaja Jonnalagedda,

Ayan Acharya, Yang Yang, Chuxu Zhang, Khiem Le, David Cieslak, Kai Lu, and

Xin Xia. This dissertation would not have been possible without their valuable con-

tributions and support. I would also like to express my gratitude to all my wonderful

lab mates in the DIAL Lab, both current and former: Yihong Ma, Joe Germino, Do-

heon Han, Bruce Huang, Peiyu Li, Jennifer Schnur, Grigorii Khvatskii, Anna Sokol,

Daheng Wang, Steven Krieg, and Damien Dablain, as well as Mandana Saebi. Their

companionship, discussions, and encouragement have made my Ph.D. journey truly

enriching.

Finally, I owe my greatest gratitude to my parents for their unconditional love

and endless support. Special thanks to Marsha, who has accompanied my soul both

in person and from afar, and who has completed me during the days we have shared

and the days that are yet to come. I also wish to thank Marwin, who has helped me

understand myself better through the experience of knowing you.

xvi

CHAPTER 1

INTRODUCTION

Graphs are fundamental data structures that provide a flexible framework for

representing relations among real-world data. Graph-structured data naturally arise

in various domains, including social network [91], world wide web [116], protein-

protein interactions [141], citation networks [169] and recommender system [85], etc.

Beyond conventional machine learning problems where the instances are assumed to

be independent, the graph data structure provides a means to capture and analyze

the relationship between different instances.

Graph Neural Networks (GNNs) [59, 82, 167] have emerged as the dominant

approach for solving graph-related tasks. They have been successfully applied to

node-level [82], link-level [178], and graph-level [167] problems across various do-

mains [17, 148]. However, despite their initial success, several challenges limit their

broader applicability.

First, the robustness of GNNs is a concern. Their performance can be compro-

mised by low-quality graph data or inherent model limitations, making them less reli-

able and difficult to trust in real-world applications. Second, GNNs require significant

computational resources due to the non-Euclidean nature of graph data. Extracting

graph structures and training GNNs on individual graphs demand substantial com-

putation, posing efficiency challenges. Lastly, GNNs have limited generalizability.

They struggle to transfer knowledge from one graph to another and are typically

confined to tasks where data is already well-represented as a graph.

To solve the aforementioned limitations, this thesis develops threefold techniques

1

Figure 1.1: Overview of this thesis research. We explore three aspects to enhance
GNN’s capability on graph applications: robustness, efficiency, and adaptability.

to enhance the GNNs’ capability in terms of their robustness, effectiveness, and

adaptability. The organization of this thesis is as follows.

In Part I, we improve the robustness of GNNs on link prediction (LP) tasks.

Robustness is crucial in GNNs since their performance can significantly decline when

faced with low-quality graph data or intrinsic limitations in the model architecture,

thereby reducing reliability and trust in practical scenarios. Specifically, two critical

aspects necessitate the study of robustness in GNNs for LP. First, GNNs are sensitive

to the issue of dataset shift [107], which arises from structural differences between

training and testing sets. In LP, the target link influences both the model input

2

(topological structure) and output (existence or absence of the link), thus causing

inconsistent representations between training and testing phases when encoded by

GNNs’ message passing [57]. Second, the quality and accuracy of collected graph

data directly affect LP results. Real-world graphs frequently contain incomplete or

incorrect connections due to measurement errors, labeling mistakes, or noisy data

collection methods [26, 196]. Such noise makes it difficult for GNNs to distinguish

real connections from false ones, severely reducing the reliability and generalization

capability of the models. Given these two key challenges from both model and data

perspective, it is essential to address and improve the robustness of GNNs to ensure

their effective application to real-world problems.

Chapter 2 discusses the robustness of GNNs from a model perspective. This

chapter identifies and addresses the dataset shift problem in LP, where the structural

patterns of the graph differ significantly between the training and testing phases.

The discrepancy arises because target links in the training set are always observed,

whereas target links in the testing set are unknown, causing biased node representa-

tions encoded by GNNs. This bias results in performance degradation when models

are applied to new or unseen graph data. To address this, we proposes FakeEdge,

a model-agnostic approach designed to reduce the structural gap between training

and testing sets. By deliberately adding or removing the target link, FakeEdge cor-

rects the mismatch and keep the GNNs’ link representation consistent across training

and testing. The effectiveness and robustness of this method are validated through

extensive experiments on multiple datasets spanning diverse backbone models.

Chapter 3 investigates GNNs robustness from a data perspective. This chapter

addresses the problem of noisy and incomplete graph data, which often limits the

generalization of LP models. It introduces a novel data augmentation framework

called COmplete and REduce (CORE). CORE enhances the quality of graph data

in two stages: first, the Complete stage adds potentially missing edges to build a

3

more complete graph, even if it might introduce some noise; second, the Reduce

stage removes unnecessary or noisy edges while keeping only the edges essential for

effective link prediction. By carefully balancing between adding useful edges and

removing harmful ones, CORE improves the quality of the data, resulting in more

robust and reliable GNN-based LP models. Extensive experiments demonstrate that

CORE achieves superior performance compared to existing methods, validating its

effectiveness in producing robust data augmentations for real-world graph tasks.

In Part II, we enhance the efficiency of GNNs to make them more applicable to

real-world problems. Due to the non-Euclidean nature of graph data, GNNs typically

require considerable computational resources. Extracting structural information and

training GNN models on individual graphs involve high computational costs, leading

to efficiency challenges. Specifically, two main issues highlight the importance of im-

proving GNN efficiency. First, enhancing the expressive power of GNNs often requires

incorporating additional structural information, such as graph substructures [22, 27].

However, identifying and encoding these substructures introduce significant computa-

tional overhead, restricting their applicability to large-scale graphs. Second, current

GNN approaches typically require training with gradient descent when applied to a

graph, significantly increasing computational demands and limiting their practical-

ity. Thus, addressing these efficiency challenges is necessary to ensure GNNs can be

effectively utilized in large-scale and resource-sensitive scenarios.

Chapter 4 improves the expressiveness of GNNs while keeping computational

complexity manageable. GNNs are provably unable to capture specific graph sub-

structures, which restricts their representational power. For instance, the Common

Neighbor substructure [91], critical for LP, cannot be effectively represented by vanilla

GNN models [182]. However, explicitly extracting structural features from graphs is

computationally expensive, especially at large scales. The core challenge is that LP

tasks inherently require link-level structural features, typically resulting in quadratic

4

computational complexity, whereas vanilla GNNs primarily focus on node-level rep-

resentations through message-passing. To address this issue, we propose the Mes-

sage Passing Link Predictor (MPLP), which estimates essential graph substructures

without explicitly extracting them. Experimental results demonstrate that MPLP

achieves state-of-the-art performance on large-scale LP tasks while maintaining fa-

vorable computational efficiency.

Chapter 5 proposes a training-free paradigm for GNNs, significantly enhancing

their efficiency in semi-supervised node classification tasks on text-attributed graphs

(TAG). Traditional GNNs commonly require iterative optimization methods like gra-

dient descent to update model parameters during training. However, this iterative

training approach is computationally expensive. To overcome these limitations, this

chapter explores an alternative approach by approximating optimal model parameters

directly from node attributes and graph structures, bypassing iterative optimization

entirely. Leveraging the observation that node features from the same class cluster

in similar linear subspaces, we develop a closed-form solution for fitting linear GNN

models. This solution is computationally efficient and aligns with minimum-norm

interpolation in an over-parameterized linear regression setting. By removing the

need for iterative training, our approach significantly reduces computational costs,

making it particularly suitable for practical and scalable applications.

In Part III, we shift our focus to the adaptability of GNNs, investigating whether

they can effectively transfer learned knowledge across different graphs and even ex-

tend beyond explicitly graph-structured data. Despite their success on individual

graph tasks, current GNN approaches typically require full retraining for each new

graph, thus ignoring potentially valuable information learned from previously en-

countered graphs [98]. This limitation becomes particularly significant in scenarios

where the new target graph has limited or insufficient training data, making effective

learning challenging. Furthermore, GNN research has predominantly concentrated on

5

problems naturally represented as graphs, such as social or citation networks, while

tasks not explicitly structured as graphs have been largely overlooked. Expanding

GNN adaptability to these broader scenarios could greatly enhance their practical

applicability. Therefore, studying adaptability is important for enabling GNNs to

leverage cross-graph knowledge and to extend their application scope beyond tradi-

tional graph settings.

Chapter 6 presents an approach to improve the adaptability of GNNs in link pre-

diction tasks, enabling models to transfer knowledge from previously seen graphs and

adapt to new graphs during inference without retraining. Typically, GNNs require

extensive retraining for each new graph, resulting in limited transferability. To over-

come this limitation, this chapter introduces a Universal Link Prediction framework

(UniLP) inspired by In-context Learning [18], a strategy widely used in large lan-

guage models. By employing relevant examples directly within the inference process,

the proposed method dynamically adjusts the learned link representations to cap-

ture the unique connectivity patterns of each target graph. An attention mechanism

is utilized to condition link representations on graph-specific contexts, allowing the

model to effectively leverage knowledge from previously seen graphs. Extensive eval-

uations demonstrate that this approach achieves robust adaptability across diverse

graph datasets, matching or even surpassing the performance of traditional methods

that require dedicated training for each graph.

Chapter 7 explores the adaptability of GNNs by investigating their applicability

to a practical scenario that is not inherently represented as a graph—specifically, a

relational database problem. We examine whether GNNs can effectively adapt to

the relational data setting without requiring extensive handcrafted feature engineer-

ing, which is typically necessary to extract meaningful signals. Transaction-related

data commonly resides in relational databases, presenting challenges in directly ap-

plying modern machine learning methods due to their complex structure. To ad-

6

dress this, we propose converting the relational database into a heterogeneous graph

structure, enabling the application of GNNs. By doing so, our method leverages

the structural relationships inherent within relational databases and enhances the

adaptability of GNNs beyond conventional graph datasets. This graph-based ap-

proach allows GNNs to automatically utilize relational information without manual

feature construction, significantly broadening their practical usability. Experimental

results demonstrate that our unified graph formulation successfully adapts GNNs to

the relational database setting, achieving superior performance compared to existing

production baselines.

In Chapter 8, we conclude this thesis and look into the future of graph machine

learning for practical applications.

7

PART I

ROBUST GNNS

8

CHAPTER 2

ROBUST GNNS BY ALLEVIATING DATASET SHIFT

2.1 Overview

This chapter investigates the robustness of GNNs from the perspective of ad-

dressing dataset shift inherent in their application to link prediction tasks. Despite

the widespread success of GNNs, a fundamental issue arises due to their reliance on

the assumption that graph connectivity patterns remain consistent between training

and testing phases. Specifically, links used in training are always observed, whereas

those in testing have not yet formed, creating a gap in structural information and

causing biased representations—this phenomenon is termed dataset shift. Through

theoretical analysis, we demonstrate that existing GNN-based methods for link pre-

diction are vulnerable to this issue. To mitigate dataset shift, we propose FakeEdge,

a model-agnostic technique designed to bridge the topological differences between

training and testing graphs. It presents empirical evidence of FakeEdge’s effective-

ness in addressing the dataset shift problem across diverse datasets and domains.

This chapter primarily builds upon our collaborative study previously published

in [37] with Yijun Tian, Zhichun Guo, Yang Yang, and Nitesh V. Chawla.

2.2 Introduction

Graph structured data is ubiquitous across a variety of domains, including social

networks [91], protein-protein interactions [141], movie recommendations [85], and ci-

tation networks [169]. It provides a non-Euclidean structure to describe the relations

9

among entities. The link prediction task is to predict missing links or new forming

links in an observed network [168]. Recently, with the success of graph neural net-

works (GNNs) for graph representation learning [19, 33, 43, 82], several GNN-based

methods have been developed [81, 90, 118, 157, 178] to solve link prediction tasks.

These methods encode the representation of target links with the topological struc-

tures and node/edge attributes in their local neighborhood. After recognizing the

pattern of observed links (training sets), they predict the likelihood of forming new

links between node pairs (testing sets) where no link is yet observed.

Nevertheless, existing methods pose a discrepancy of the target link representation

between training and testing sets. As the target link is never observed in the testing

set by the nature of the task, it will have a different local topological structure when

compared to its counterpart from the training set. Thus, the corrupted topological

structure shifts the target link representation in the testing set, which we recognize

it as a dataset shift problem [107, 123] in link prediction. Note that there are some

existing work [178] applying edge masking to moderate such a problem, similar to our

treatment. However, they tend to regard it as an empirical trick and fail to identify

the fundamental cause as a problem of dataset shift.

We give a concrete example to illustrate how dataset shift can happen in the link

prediction task, especially for GNN-based models with message passing paradigm [57]

simulating the 1-dimensional Weisfeiler-Lehman (1-WL) test [160]. In Figure 2.1, we

have two local neighborhoods sampled as subgraphs from the training (top) and

testing (bottom) set respectively. The node pairs of interest, which we call focal

node pairs, are denoted by black bold circles. From a bird’s-eye viewpoint, these

two subgraphs are isomorphic when we consider the existence of the positive test

link (dashed line), even though the test link has not been observed. Ideally, two

isomorphic graphs should have the same representation encoded by GNNs, leading

to the same link prediction outcome. However, one iteration of 1-WL in Figure 2.1

10

1

11

1

11
Extract Subgraph

around the focal node pair

1
{1,1}

1
{1}

1
{1}

1
{1,1}

1
{1,1}

1
{1,1}

3

22

3

33

Link in testing

Link in training

Observed
Unobserved

Assign
Initial Color Refine ColorAggregate

Neighbors

Train (y=1)

Test (y=1)

1-WL test

Figure 2.1: 1-WL test is performed to exhibit the learning process of GNNs. Two
node pairs (denoted as bold black circles) and their surrounding subgraphs are sam-
pled from the graph as a training (top) and testing (bottom) instance respectively.
Two subgraphs are isomorphic when we omit the focal links. One iteration of 1-WL
assigns different colors, indicating the occurrence of dataset shift.

produces different colors for the focal node pairs between training and testing sets,

which indicates that the one-layer GNN can encode different representations for these

two isomorphic subgraphs, giving rise to dataset shift issue.

Dataset shift can substantially degrade model performance since it violates the

common assumption that the joint distribution of inputs and outputs stays the same

in both the training and testing set. The root cause of this phenomenon in link

prediction is the unique characteristic of the target link: the link always plays a dual

role in the problem setting and determines both the input and the output for a link

prediction task. The existence of the link apparently decides whether it is a positive or

negative sample (output). Simultaneously, the presence of the link can also influence

how the representation is learned through the introduction of different topological

structures around the link (input). Thus, it entangles representation learning and

labels in the link prediction problem.

To decouple the dual role of the link, we advocate a framework, namely sub-

graph link prediction, which disentangles the label of the link and its topological

structure. As most practical link prediction methods make a prediction by capturing

11

the local neighborhood of the link [4, 91, 118, 178, 182], we unify them all into this

framework, where the input is the extracted subgraph around the focal node pair and

the output is the likelihood of forming a link incident with the focal node pair in the

subgraph. From the perspective of the framework, we find that the dataset shift issue

is mainly caused by the presence/absence of the focal link in the subgraph from the

training/testing set. This motivates us to propose a simple but effective technique,

FakeEdge, to deliberately add or remove the focal link in the subgraph so that

the subgraph can stay consistent across training and testing. FakeEdge is a model-

agnostic technique, allowing it to be applied to any subgraph link prediction model.

It assures that the model would learn the same subgraph representation regardless

of the existence of the focal link. Lastly, empirical experiments prove that diminish-

ing the dataset shift issue can significantly boost the link prediction performance on

different baseline models.

We summarize our contributions as follows. We first unify most of the link pre-

diction methods into a common framework named as subgraph link prediction, which

treats link prediction as a subgraph classification task. In the view of the framework,

we theoretically investigate the dataset shift issue in link prediction tasks, which mo-

tivates us to propose FakeEdge, a model-agnostic augmentation technique, to ease

the distribution gap between the training and testing. We further conduct extensive

experiments on a variety of baseline models to reveal the performance improvement

with FakeEdge to show its capability of alleviating the dataset shift issue on a broad

range of benchmarks.

2.3 Related work

Link Prediction. Early studies on link prediction problems mainly focus on heuris-

tics methods, which require expertise on the underlying trait of network or hand-

crafted features, including Common Neighbor [91], Adamic–Adar index [4] and Pref-

12

erential Attachment [9], etc. WLNM [177] suggests a method to encode the induced

subgraph of the target link as an adjacency matrix to represent the link. With the

huge success of GNN [82], GNN-based link prediction methods have become domi-

nant across different areas. Graph Auto Encoder(GAE) and Variational Graph Auto

Encoder(VGAE) [81] perform link prediction tasks by reconstructing the graph struc-

ture. SEAL [178] and DE [90] propose methods to label the nodes according to the

distance to the focal node pair. To better exploit the structural motifs [105] in dis-

tinct graphs, a walk-based pooling method (WalkPool) [118] is designed to extract

the representation of the local neighborhood. PLNLP [157] sheds light on pairwise

learning to rank the node pairs of interest. Based on two-dimensional Weisfeiler-

Lehman tests, Hu et al. propose a link prediction method that can directly obtain

node pair representation [63]. To accelerate the inference speed, LLP [58] is proposed

to perform the link prediction task by distilling the knowledge from GNNs to MLPs.

Dataset Shift. Dataset shift is a fundamental issue in the world of machine learn-

ing. Within the collection of dataset shift issues, there are several specific problems

based on which part of the data experience the distributional shift, including covari-

ate shift, concept shift, and prior probability shift. [107] gives a rigorous definition

about different dataset shift situations. In the context of GNNs, [170] investigates the

generalization ability of GNN models, and propose a self-supervised task to improve

the size generalization. [193] studies the problem that the node labels in training set

are not uniformly sampled and suggests applying a regularizer to reduce the distribu-

tional gap between training and testing. [162] proposes a risk minimization method

by exploring multiple context of the observed graph to enable GNNs to generalize to

out-of-distribution data. [192] demonstrates that the existing link prediction mod-

els can fail to generalize to testing set with larger graphs and designs a structural

pairwise embedding to achieve size stability. [13, 20, 101] study the dataset shift

13

problem for graph-level tasks, especially focusing on the graphs in the training and

testing set with varying sizes.

Graph Data Augmentation. Several data augmentation methods are introduced

to modify the graph connectivity by adding or removing edges [186]. DropEdge [127]

acts like a message passing reducer to tackle over-smoothing or overfitting problems

[25]. Topping et al. modify the graph’s topological structure by removing negatively

curved edges to solve the bottleneck issue [7] of message passing [144]. GDC [84]

applies graph diffusion methods on the observed graph to generate a diffused coun-

terpart as the computation graph. For the link prediction task, CFLP [185] generates

counterfactual links to augment the original graph. Edge Proposal Set [134] injects

edges into the training graph, which are recognized by other link predictors in order

to improve performance.

2.4 A proposed unified framework for link prediction

In this section, we formally introduce the link prediction task and formulate sev-

eral existing GNN-based methods into a common general framework.

2.4.1 Preliminary

Let G = (V,E,xV ,xE) be an undirected graph. V is the set of nodes with size n,

which can be indexed as {i}ni=1. E ⊆ V × V is the observed set of edges. xV
i ∈ X V

represents the feature of node i. xE
i,j ∈ XE represents the feature of the edge (i, j)

if (i, j) ∈ E. The other unobserved set of edges is Ec ⊆ V × V \E, which are either

missing or going to form in the future in the original graph G. d(i, j) denotes the

shortest path distance between node i and j. The r-hop enclosing subgraph Gr
i,j for

node i, j is the subgraph induced from G by node sets V r
i,j = {v|v ∈ V, d(v, i) ≤

r or d(v, j) ≤ r}. The edges set of Gr
i,j are Er

i,j = {(p, q)|(p, q) ∈ E and p, q ∈ V r
i,j}.

14

An enclosing subgraph Gr
i,j = (V r

i,j, E
r
i,j,x

V
V r
i,j
,xE

Er
i,j
) contains all the information in

the neighborhood of node i, j. The node set {i, j} is called the focal node pair, where

we are interested in if there exists (observed) or should exist (unobserved) an edge

between nodes i, j. In the context of link prediction, we will use the term subgraph

to denote enclosing subgraph in the following sections.

2.4.2 Subgraph link prediction

In this section, we discuss the definition of Subgraph Link Prediction and

investigate how current link prediction methods can be unified in this framework.

We mainly focus on link prediction methods based on GNNs, which propagate the

message to each node’s neighbors in order to learn the representation. We start by

giving the definition of the subgraph’s properties:

Definition 1. Given a graph G = (V,E,xV ,xE) and the unobserved edge set Ec, a

subgraph Gr
i,j have the following properties:

1. a label y ∈ {0, 1} of the subgraph indicates if there exists, or will form, an edge

incident with focal node pair {i, j}. That is, Gr
i,j label y = 1 if and only if (i, j) ∈

E ∪ Ec. Otherwise, label y = 0.

2. the existence e ∈ {0, 1} of an edge in the subgraph indicates whether there is an

edge observed at the focal node pair {i, j}. If (i, j) ∈ E, e = 1. Otherwise e = 0.

3. a phase c ∈ {train, test} denotes whether the subgraph belongs to training or

testing stage. Especially for a positive subgraph (y = 1), if (i, j) ∈ E, then c = train.

If (i, j) ∈ Ec, then c = test.

Note that, the label y = 1 does not necessarily indicate the observation of the

edge at the focal node pair {i, j}. A subgraph in the testing set may have the label

y = 1 but the edge may not be present. The existence e = 1 only when the edge is

observed at the focal node pair.

15

Definition 2. Given a subgraph Gr
i,j, Subgraph Link Prediction is a task to learn

a feature h of the subgraph Gr
i,j and uses it to predict the label y ∈ {0, 1} of the

subgraph.

Generally, subgraph link prediction regards the link prediction task as a subgraph

classification task. The pipeline of subgraph link prediction starts with extracting

the subgraph Gr
i,j around the focal node pair {i, j}, and then applies GNNs to encode

the node representation Z. The latent feature h of the subgraph is obtained by

pooling methods on Z. In the end, the subgraph feature h is fed into a classifier. In

summary, the whole pipeline entails:

1. Subgraph Extraction: Extract the subgraph Gr
i,j around the focal node pair

{i, j};

2. Node Representation Learning: Z = GNN(Gr
i,j), where Z ∈ R|V r

i,j |×Fhidden is
the node embedding matrix learned by the GNN encoder;

3. Pooling: h = Pooling(Z;Gr
i,j), where h ∈ RFpooled is the latent feature of the

subgraph Gr
i,j;

4. Classification: y = Classifier(h).

There are two main streams of GNN-based link prediction models. Models like

SEAL [178] and WalkPool [118] can naturally fall into the subgraph link prediction

framework, as they thoroughly follow the pipeline. In SEAL, SortPooling [181] serves

as a readout to aggregate the node’s features in the subgraph. WalkPool designs a

random-walk based pooling method to extract the subgraph feature h. Both methods

take advantage of the node’s representation from the entire subgraph.

In addition, there is another stream of link prediction models, such as GAE [81]

and PLNLP [157], which learns the node representation and then devises a score

function on the representation of the focal node pair to represent the likelihood of

forming a link. We find that these GNN-based methods with the message passing

paradigm also belong to a subgraph link prediction task. Considering a GAE with

16

l layers, each node v essentially learns its embedding from its l-hop neighbors {i|i ∈

V, d(i, v) ≤ l}. The score function can be then regarded as a center pooling on the

subgraph, which only aggregates the features of the focal node pair as h to represent

the subgraph. For a focal node pair {i, j} and GAE with l layers, an l-hop subgraph

Gl
i,j sufficiently contains all the information needed to learn the representation of

nodes in the subgraph and score the focal node pair {i, j}. Thus, the GNN-based

models can also be seen as a citizen of subgraph link prediction. In terms of the score

function, there are plenty of options depending on the predictive power in practice.

In general, the common choices are: (1) Hadamard product: h = zi ◦ zj; (2) MLP:

h = MLP(zi ◦ zj) where MLP is the Multi-Layer Perceptron; (3) BiLinear: h = ziW zj

where W is a learnable matrix; (4) BiLinearMLP: h = MLP(zi) ◦ MLP(zj).

In addition to GNN-based methods, the concept of the subgraph link prediction

can be extended to low-order heuristics link predictors, like Common Neighbor [91],

Adamic–Adar index [4], Preferential Attachment [9], Jaccard Index [69], and Resource

Allocation [191]. The predictors with the order r can be computed by the subgraph

Gr
i,j. The scalar value can be seen as the latent feature h.

2.5 FakeEdge: Mitigates dataset shift in subgraph link prediction

In this section, we start by giving the definition of dataset shift in the general

case, and then formally discuss how dataset shift occurs with regard to subgraph

link prediction. Then we propose FakeEdge as a graph augmentation technique to

ease the distribution gap of the subgraph representation between the training and

testing sets. Lastly, we discuss how FakeEdge can enhance the expressive power of

any GNN-based subgraph link prediction model.

17

2.5.1 Dataset shift

Definition 3. Dataset Shift happens when the joint distribution between train and

test is different. That is, p(h, y|c = train) ̸= p(h, y|c = test).

A simple example of dataset shift is an object detection system. If the system

is only designed and trained under good weather conditions, it may fail to capture

objects in bad weather. In general, dataset shift is often caused by some unknown

latent variable, like the weather condition in the example above. The unknown

variable is not observable during the training phase so the model cannot fully capture

the conditions during testing. Similarly, the edge existence e ∈ {0, 1} in the subgraph

poses as an ”unknown” variable in the subgraph link prediction task. Most of the

current GNN-based models neglect the effect of the edge existence on encoding the

subgraph’s feature.

Definition 4. A subgraph’s feature h is called Edge Invariant if p(h, y|e) = p(h, y).

To explain, the Edge Invariant subgraph embedding stays the same no matter if

the edge is present at the focal node pair or not. It disentangles the edge’s existence

and the subgraph representation learning. For example, common neighbor predictor

is Edge Invariant because the existence of an edge at the focal node pair will not affect

the number of common neighbors that two nodes can have. However, Preferential

Attachment, another widely used heuristics link prediction predictor, is not Edge

Invariant because the node degree varies depending on the existence of the edge.

Theorem 1. GNN cannot learn the subgraph feature h to be Edge Invariant.

Recall that the subgraphs in Figure 2.1 are encoded differently between the train-

ing and testing set because of the presence/absence of the focal link. Thus, the

vanilla GNN cannot learn the Edge Invariant subgraph feature. Learning Edge In-

variant subgraph feature is crucial to mitigate the dataset shift problem. Here, we

give our main theorem about the issue in the link prediction task:

18

Attention
Edge Plus

Edge AttEdge MeanPooling

+ +

Pooling

- -

GNN Encoder

GNN Encoder

Edge Minus

Figure 2.2: The proposed four FakeEdge methods. In general, FakeEdge encourages
the link prediction model to learn the subgraph representation by always deliberately
adding or removing the edges at the focal node pair in each subgraph. In this way,
FakeEdge can reduce the distribution gap of the learned subgraph representation
between the training and testing set.

Theorem 2. Given p(h, y|e, c) = p(h, y|e), there is no Dataset Shift in the link

prediction if the subgraph embedding is Edge Invariant. That is, p(h, y|e) =

p(h, y) =⇒ p(h, y|c) = p(h, y).

The assumption p(h, y|e, c) = p(h, y|e) states that when the edge at the focal

node pair is taken into consideration, the joint distribution keeps the same across the

training and testing stages, which means that there is no other underlying unobserved

latent variable shifting the distribution. The theorem shows an Edge Invariant

subgraph embedding will not cause a dataset shift phenomenon.

Theorem 2 gives us the motivation to design the subgraph embedding to be Edge

Invariant. When it comes to GNNs, the practical GNN is essentially a message

passing neural network [57]. The existence of the edge incident at the focal node pair

can determine the computational graph for message passing when learning the node

representation.

19

2.5.2 Proposed methods

Having developed conditions of dataset shift phenomenon in link prediction, we

next introduce a collection of subgraph augmentation techniques named as FakeEdge

(Figure 2.2), which satisfies the conditions in Theorem 2. The motivation is to

mitigate the distribution shift of the subgraph embedding by eliminating the different

patterns of target link existence between training and testing sets. Note that all of the

strategies follow the same discipline: align the topological structure around the focal

node pair in the training and testing datasets, especially for the isomorphic subgraphs.

Therefore, we expect that it can gain comparable performance improvement across

different strategies.

Compared to the vanilla GNN-based subgraph link prediction methods, FakeEdge

augments the computation graph for node representation learning and subgraph pool-

ing step to obtain an Edge Invariant embedding for the entire subgraph.

Edge Plus A simple strategy is to always make the edge present at the focal node

pair for all training and testing samples. Namely, we add an edge into the edge set of

subgraph by Er+
i,j = Er

i,j∪{(i, j)}, and use this edge set to calculate the representation

hplus of the subgraph Gr+
i,j .

Edge Minus Another straightforward modification is to remove the edge at the

focal node pair if existing. That is, we remove the edge from the edge set of subgraph

by Er−
i,j = Er

i,j\{(i, j)}, and obtain the representation hminus from Gr−
i,j .

For GNN-based models, adding or removing edges at the focal node pair can

amplify or reduce message propagation along the subgraph. It may also change the

connectivity of the subgraph. We are interested to see if it can be beneficial to take

both situations into consideration by combining them. Based on Edge Plus and Edge

Minus, we further develop another two Edge Invariant methods:

Edge Mean To combine Edge Plus and Edge Minus, one can extract these two

features and fuse them into one view. One way is to take the average of the two

20

latent features by hmean = hplus+hminus

2
.

Edge Att Edge Mean weighs Gr+
i,j and Gr−

i,j equally on all subgraphs. To vary

the importance of two modified subgraphs, we can apply an adaptive weighted sum

operation. Similar to the practice in the text translation [95], we apply an attention

mechanism to fuse the hplus and hminus by:

hatt = wplus ∗ hplus + wminus ∗ hminus, (2.1)

where w· = SoftMax(q⊺ · tanh(W · h· + b)) (2.2)

2.5.3 Expressive power of structural representation

In addition to solving the issue of dataset shift, FakeEdge can tackle another

problem that impedes the expressive power of link prediction methods on the struc-

tural representation [137]. In general, a powerful model is expected to discriminate

most of the non-isomorphic focal node pairs. For instance, in Figure 2.3 we have

two isomorphic subgraphs A and B, which do not have any overlapping nodes. Sup-

pose that the focal node pairs we are interested in are {u,w} and {v, w}. Obviously,

those two focal node pairs have different structural roles in the graph, and we expect

different structural representations for them. With GNN-based methods like GAE,

the node representation of the node u and v will be the same zu = zv, due to the

fact that they have isomorphic neighborhoods. GAE applies a score function on the

focal node pair to pool the subgraph’s feature. Hence, the structural representation

of node sets {u,w} and {v, w} would be the same, leaving them inseparable in the

embedding space. This issue is caused by the limitation of GNNs, whose expressive

power is bounded by 1-WL test [167].

Zhang et al. address this problem by assigning distinct labels between the focal

node pair and the rest of the nodes in the subgraph [182]. FakeEdge manages to

resolve the issue by augmenting the neighborhoods of those two isomorphic nodes. For

21

u v

w

Subgraph A Subgraph B

Figure 2.3: Given two isomorphic but non-overlapping subgraphs A and B, GNNs
learn the same representation for the nodes u and v. Hence, GNN-based methods
cannot distinguish focal node pairs {u,w} and {v, w}. However, by adding a Fa-
keEdge at {u,w} (shown as the dashed line in the figure), it can break the tie of the
representation for u and v, thanks to u’s modified neighborhood.

instance, we can utilize the Edge Plus strategy to deliberately add an edge between

nodes u and w (shown as the dashed line in Figure 2.3). Note that the edge between v

and w has already existed. There is no need to add an edge between them. Therefore,

the node u and v will have different neighborhoods (u has 4 neighbors and v has 3

neighbors), resulting in the different node representation between the node u and v

after the first iteration of message propagation with GNN. In the end, we can obtain

different representations for two focal node pairs. Other FakeEdge methods like Edge

Minus can also tackle the issue in a similar way.

According to Theorem 2 in [182], such non-isomorphic focal node pairs {u,w},

{v, w} are not sporadic cases in a graph. Given an n nodes graph whose node degree

is O(log
1−ϵ
2r n) for any constant ϵ > 0, there exists ω(n2ϵ) pairs of such kind of {u,w}

and {v, w}, which cannot be distinguished by GNN-based models like GAE. However,

FakeEdge can enhance the expressive power of link prediction methods by modifying

the subgraph’s local connectivity.

22

2.6 Experiments

In this section, we conduct extensive experiments to evaluate how FakeEdge can

mitigate the dataset shift issue on various baseline models in the link prediction

task. Then we empirically show the distribution gap of the subgraph representation

between the training and testing and discuss how the dataset shift issue can worsen

with deeper GNNs. The code for the experiment can be found at https://github.

com/Barcavin/FakeEdge.

2.6.1 Experimental setup

Baseline methods. We show how FakeEdge techniques can improve the existing

link prediction methods, including GAE-like models [81], PLNLP [157], SEAL [178],

and WalkPool [118]. To examine the effectiveness of FakeEdge, we compare the

model performance with subgraph representation learned on the original unmodi-

fied subgraph and the FakeEdge augmented ones. For GAE-like models, we apply

different GNN encoders, including GCN [82], SAGE [59] and GIN [167]. SEAL and

WalkPool have already been implemented in the fashion of the subgraph link predic-

tion. However, a subgraph extraction preprocessing is needed for GAE and PLNLP,

since they are not initially implemented as the subgraph link prediction. GCN,

SAGE, and PLNLP use a score function to pool the subgraph. GCN and SAGE

use the Hadamard product as the score function, while MLP is applied for PLNLP

(see Section 2.4.2 for discussions about the score function). Moreover, GIN applies a

subgraph-level pooling strategy, called ”mean readout” [167], whose pooling is based

on the entire subgraph. Similarly, SEAL and WalkPool also utilize the pooling on

the entire subgraph to aggregate the representation. More details about the model

implementation can be found in section A.3.

23

https://github.com/Barcavin/FakeEdge
https://github.com/Barcavin/FakeEdge

TABLE 2.1

COMPARISON WITH AND WITHOUT FAKEEDGE.

Models FakeEdge Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

GCN

Original 84.92±1.95 77.05±2.18 81.58±4.62 94.07±1.50 96.92±0.73 93.17±0.45 93.76±0.65 88.78±1.85 76.32±4.65 60.72±5.88 95.35±0.36

Edge Plus 91.94±0.90 89.54±1.17 97.91±0.14 97.10±1.01 98.03±0.72 95.48±0.42 97.86±0.27 89.65±1.74 85.42±0.91 95.96±0.41 98.05±0.30

Edge Minus 92.01±0.94 90.29±0.88 97.87±0.15 97.16±0.97 98.14±0.66 95.50±0.43 97.90±0.29 89.47±1.86 85.39±1.08 96.05±0.37 97.97±0.31

Edge Mean 91.86±0.76 89.61±0.96 97.94±0.13 97.19±1.00 98.08±0.66 95.52±0.43 97.70±0.36 89.62±1.82 85.23±1.00 96.08±0.35 98.07±0.27

Edge Att 92.06±0.85 88.96±1.05 97.96±0.12 97.20±0.69 97.96±0.39 95.46±0.45 97.65±0.17 89.76±2.06 85.26±1.32 95.90±0.47 98.04±0.16

SAGE

Original 89.12±0.90 87.76±0.97 94.95±0.44 96.57±0.57 98.11±0.48 94.12±0.45 97.11±0.31 87.62±1.63 79.35±1.66 88.37±1.46 95.70±0.44

Edge Plus 93.21±0.82 90.88±0.80 97.91±0.14 97.64±0.73 98.72±0.59 95.68±0.39 98.20±0.13 90.94±1.48 86.36±0.97 96.46±0.38 98.41±0.19

Edge Minus 92.45±0.78 90.14±1.04 97.93±0.14 97.50±0.67 98.66±0.55 95.57±0.39 98.13±0.10 90.83±1.59 85.62±1.17 92.91±1.09 98.34±0.26

Edge Mean 92.77±0.69 90.60±0.94 97.96±0.13 97.67±0.70 98.62±0.61 95.69±0.37 98.20±0.13 90.86±1.51 86.24±1.01 96.22±0.38 98.41±0.21

Edge Att 93.31±1.02 91.01±1.14 98.01±0.13 97.40±0.94 98.70±0.59 95.49±0.49 98.22±0.24 90.64±1.88 86.46±0.91 96.31±0.59 98.43±0.13

GIN

Original 82.70±1.93 77.85±2.64 91.32±1.13 94.89±0.89 96.05±1.10 92.95±0.51 94.50±0.65 85.23±2.56 73.29±3.88 84.29±1.20 94.34±0.57

Edge Plus 90.72±1.11 89.54±1.19 97.63±0.14 96.03±1.37 98.51±0.55 95.38±0.35 97.84±0.40 89.71±2.06 86.61±0.87 95.79±0.48 97.67±0.23

Edge Minus 89.88±1.26 89.30±1.08 97.27±0.17 96.36±0.83 98.62±0.45 95.35±0.35 97.80±0.41 89.40±1.91 86.55±0.83 95.72±0.45 97.33±0.36

Edge Mean 90.30±1.22 89.47±1.13 97.53±0.19 96.45±0.90 98.66±0.45 95.39±0.37 97.78±0.40 89.66±2.00 86.51±0.92 95.73±0.43 97.57±0.32

Edge Att 90.76±0.88 89.55±0.61 97.50±0.15 96.34±0.82 98.35±0.54 95.29±0.29 97.66±0.33 89.39±1.61 86.21±0.67 95.78±0.52 97.74±0.33

PLNLP

Original 82.37±1.70 82.93±1.73 87.36±4.90 95.37±0.87 97.86±0.93 92.99±0.71 95.09±1.47 88.31±2.21 81.59±4.31 86.41±1.63 90.63±1.68

Edge Plus 91.62±0.87 89.88±1.19 98.31±0.21 98.09±0.73 98.77±0.39 95.33±0.39 98.10±0.33 91.77±2.16 90.04±0.57 96.45±0.40 98.03±0.23

Edge Minus 91.84±1.42 88.99±1.48 98.44±0.14 97.92±0.52 98.59±0.44 95.20±0.34 98.01±0.38 91.60±2.23 89.26±0.58 95.01±0.47 97.80±0.16

Edge Mean 91.77±1.49 89.45±1.50 98.36±0.16 98.17±0.60 98.66±0.56 95.30±0.37 98.10±0.39 91.70±2.18 90.05±0.52 96.29±0.47 98.02±0.20

Edge Att 91.22±1.34 88.75±1.70 98.41±0.17 98.13±0.61 98.70±0.40 95.32±0.38 98.06±0.37 91.72±2.12 90.08±0.54 96.40±0.40 98.01±0.18

SEAL

Original 90.13±1.94 87.59±1.57 95.79±0.78 97.26±0.58 97.44±1.07 95.06±0.46 96.91±0.45 88.75±1.90 78.14±3.14 92.35±1.21 97.33±0.28

Edge Plus 90.01±1.95 89.65±1.22 97.30±0.34 97.34±0.59 98.35±0.63 95.35±0.38 97.67±0.32 89.20±1.86 85.25±0.80 95.47±0.58 97.84±0.25

Edge Minus 91.04±1.91 89.74±1.16 97.50±0.33 97.27±0.63 98.17±0.74 95.36±0.37 97.64±0.30 89.35±1.98 85.30±0.91 95.77±0.79 97.79±0.30

Edge Mean 90.36±2.17 89.87±1.14 97.52±0.34 97.38±0.68 98.23±0.70 95.30±0.34 97.68±0.33 89.19±1.85 85.30±0.87 95.61±0.64 97.83±0.23

Edge Att 91.08±1.67 89.35±1.43 97.26±0.45 97.04±0.79 98.52±0.57 95.19±0.43 97.70±0.40 89.37±1.40 85.24±1.39 95.14±0.62 97.90±0.33

WalkPool

Original 92.00±0.79 89.64±1.01 97.70±0.19 97.83±0.97 99.00±0.45 94.53±0.44 96.81±0.92 93.71±1.11 82.43±3.57 87.46±7.45 95.00±0.90

Edge Plus 91.96±0.79 89.49±0.96 98.36±0.13 97.97±0.96 98.99±0.58 95.47±0.32 98.28±0.24 93.79±1.11 91.24±0.84 97.31±0.26 98.65±0.17

Edge Minus 91.97±0.80 89.61±1.04 98.43±0.10 98.03±0.95 99.02±0.54 95.47±0.32 98.30±0.23 93.83±1.13 91.28±0.90 97.35±0.28 98.66±0.17

Edge Mean 91.77±0.74 89.55±1.09 98.39±0.11 98.01±0.89 99.02±0.56 95.47±0.29 98.30±0.24 93.70±1.12 91.26±0.81 97.27±0.29 98.65±0.19

Edge Att 91.98±0.80 89.36±0.74 98.37±0.19 98.12±0.81 99.03±0.50 95.47±0.27 98.28±0.24 93.63±1.11 91.25±0.60 97.27±0.27 98.70±0.14

The best results (AUC) are highlighted in bold..

24

Benchmark datasets. For the experiment, we use 3 datasets with node attributes

and 8 without attributes. The graph datasets with node attributes are three citation

networks: Cora [102], Citeseer [56], and Pubmed [109]. The graph datasets with-

out node attributes are eight graphs in a variety of domains: USAir [10], NS [110],

PB [3], Yeast [150], C.ele [158], Power [158], Router [136], and E.coli [180]. More

details about the benchmark datasets can be found in section A.4.

Evaluation protocols. Following the same experimental setting as of [118, 178],

the links are split into 3 parts: 85% for training, 5% for validation, and 10% for

testing. The links in validation and testing are unobserved during the training phase.

We also implement a universal data pipeline for different methods to eliminate the

data perturbation caused by train/test split. We perform 10 random data splits to

reduce the performance disturbance. Area under the curve (AUC) [14] is used as

the evaluation metrics and is reported by the epoch with the highest score on the

validation set.

2.6.2 Results

FakeEdge on GAE-like models. The results of models with (Edge Plus, Edge

Minus, Edge Mean, and Edge Att) and without (Original) FakeEdge are shown in

Table 2.1. We observe that FakeEdge is a vital component for all different meth-

ods. With FakeEdge, the link prediction model can obtain a significant performance

improvement on all datasets. GAE-like models and PLNLP achieve the most re-

markable performance improvement when FakeEdge alleviates the dataset shift issue.

FakeEdge boosts them by 2%-11% on different datasets. GCN, SAGE, and PLNLP

all have a score function as the pooling methods, which is solely based on the focal

node pair. In particular, the focal node pair is incident with the target link, which

determines how the message passes around it. Therefore, the most severe dataset

25

shift issues happen at the embedding of the focal node pair during the node repre-

sentation learning step. FakeEdge is expected to bring a notable improvement to

these situations.

Encoder matters. In addition, the choice of encoder plays an important role when

GAE is deployed on the Original subgraph. We can see that SAGE shows the best

performance without FakeEdge among these 3 encoders. However, after applying

FakeEdge, all GAE-like methods achieve comparable better results regardless of the

choice of the encoder. We come to a hypothesis that the plain SAGE itself leverages

the idea of FakeEdge to partially mitigate the dataset shift issue. Each node’s neigh-

borhood in SAGE is a fixed-size set of nodes, which is uniformly sampled from the

full neighborhood set. Thus, when learning the node representation of the focal node

pair in the positive training sets, it is possible that one node of the focal node pair

is not selected as the neighbor of the other node during the neighborhood sampling

stage. In this case, the FakeEdge technique Edge Minus is applied to modify such a

subgraph.

FakeEdge on subgraph-based models. In terms of SEAL and WalkPool, Fa-

keEdge can still robustly enhance the model performance across different datasets.

Especially for datasets like Power and Router, FakeEdge increases the AUC by over

10% on both methods. Both methods achieve better results across different datasets,

except WalkPool model on datasets Cora and Citeseer. One of the crucial compo-

nents of WalkPool is the walk-based pooling method, which actually operates on

both the Edge Plus and Edge Minus graphs. Different from FakeEdge technique,

WalkPool tackles the dataset shift problem mainly on the subgraph pooling stage.

Thus, WalkPool shows similar model performance between the Original and Fa-

keEdge augmented graphs. Moreover, SEAL and WalkPool have utilized one of the

26

FakeEdge techniques as a trick in their initial implementations. However, they have

failed to explicitly point out the fix of dataset shift issue from such a trick in their

papers.

Different FakeEdge techniques. When comparing different FakeEdge techniques,

Edge Att appears to be the most stable, with a slightly better overall performance

and a smaller variance. However, there is no significant difference between these

techniques. This observation is consistent with our expectation since all FakeEdge

techniques follow the same discipline to fix the dataset shift issue.

2.6.3 Further discussions

In this section, we conduct experiments to more thoroughly study why FakeEdge

can improve the performance of the link prediction methods. We first give an empir-

ical experiment to show how severe the distribution gap can be between training and

testing. Then, we discuss the dataset shift issue with deeper GNNs. Last but not

the least, we explore how FakeEdge can even improve the performance of heuristics

predictors.

2.6.4 Distribution gap between the training and testing

FakeEdge aims to produce Edge Invariant subgraph embedding during the train-

ing and testing phases in the link prediction task, especially for those positive samples

p(h|y = 1). That is, the subgraph representation of the positive samples between

the training and testing should be difficult, if at all, to be distinguishable from each

other. Formally, we ask whether p(h|y = 1, c = train) = p(h|y = 1, c = test), by

conducting an empirical experiment on the subgraph embedding.

We retrieve the subgraph embedding of the positive samples from both the train-

ing and testing stages, and randomly shuffle the embedding. Then we classify whether

27

Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli
0.4

0.5

0.6

0.7

0.8

0.9

1 Original
Plus
Minus
Mean
Att

Dataset

A
U

C

Distribution gap exists⬆

Figure 2.4: Distribution gap (AUC) of the positive samples between the training and
testing set.

the sample is from training (c = train) or testing (c = test). The shuffled positive

samples are split 80%/20% as train and inference sets. Note that the train set here, as

well as the inference set, contains both the shuffled positive samples from the training

and testing set in the link prediction task. Then we feed the subgraph embedding

into a 2-layer MLP classifier to investigate whether the classifier can differentiate

the training samples (c = train) and the testing samples (c = test). In general, the

classifier will struggle to undertake the classification if the embedding of training and

testing samples is drawn from the same underlying distribution, which indicates there

is no significant dataset shift issue.

We use GAE with the GCN as the encoder to run the experiment. AUC is

used to measure the discriminating power of the classifier. The results are shown

in Figure 2.4. Without FakeEdge, the classifier shows a significant ability to sepa-

rate positive samples between training and testing. When it comes to the subgraph

embedding with FakeEdge, the classifier stumbles in distinguishing the samples. The

comparison clearly reveals how different the subgraph embedding can be between the

training and testing, while FakeEdge can both provably and empirically diminish the

distribution gap.

28

TABLE 2.2

GIN’S PERFORMANCE IMPROVEMENT.

Layers Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

1 ↑2.80% ↑3.65% ↑4.53% ↑0.29% ↑1.30% ↑1.02% ↑1.54% ↑2.13% ↑5.24% ↑11.19% ↑1.67%

2 ↑4.66% ↑14.53% ↑6.64% ↑0.73% ↑1.55% ↑2.16% ↑3.40% ↑5.41% ↑25.32% ↑14.73% ↑2.59%

3 ↑9.78% ↑15.19% ↑6.57% ↑0.98% ↑2.49% ↑2.43% ↑3.60% ↑4.48% ↑20.46% ↑13.38% ↑3.14%

GIN’s performance improvement by Edge Att compared to Original with a different number of
layers. GIN utilizes mean-pooling as the subgraph-level readout.

2.6.5 Dataset shift with deeper GNNs

Given two graphs with n nodes in each graph, 1-WL test may take up to n iter-

ations to determine whether two graphs are isomorphic [132]. Thus, GNNs, which

mimic 1-WL test, tend to discriminate more non-isomorphic graphs when the number

of GNN layers increases. SEAL [182] has empirically witnessed a stronger represen-

tation power and obtained more expressive link representation with deeper GNNs.

However, we notice that the dataset shift issue in the subgraph link prediction be-

comes more severe when GNNs try to capture long-range information with more

layers.

We reproduce the experiments on GIN by using l = 1, 2, 3 message passing lay-

ers and compare the model performance by AUC scores with and without FakeEdge.

Here we only apply Edge Att as the FakeEdge technique. The relative AUC score im-

provement of Edge Att is reported, namely (AUCEdgeAtt − AUCOriginal)/AUCOriginal.

The results are shown in Table 2.2. As we can observe, the relative performance

improvement between Edge Att and Original becomes more significant with more

layers, which indicates that the dataset shift issue can be potentially more critical

when we seek deeper GNNs for greater predictive power.

To explain such a phenomenon, we hypothesize that GNNs with more layers will

29

involve more nodes in the subgraph, such that their computation graph is dependent

on the existence of the edge at the focal node pair. For example, select a node v

from the subgraph Gr
i,j, which is at least l hops away from the focal node pair {i, j},

namely l = min(d(i, v), d(j, v)). If the GNN has only l layers, v will not include the

edge (i, j) in its computation graph. But with a GNN with l + 1 layers, the edge

(i, j) will affect v’s computation graph. We leave the validation of the hypothesis to

future work.

2.6.6 Heuristic methods with FakeEdge

FakeEdge, as a model-agnostic technique, not only has the capability of alleviat-

ing the dataset shift issue for GNN-based models, but also can tackle the problem

for heuristics methods. The heuristics link predictors assign a score to each focal

node pair, indicating the likelihood of forming a new edge. Some of the conventional

heuristic link predictors, like Common Neighbor [91], Adamic–Adar index [4], or Re-

source Allocation [191], are Edge Invariant because these predictors are independent

of the existence of the target link.

However, other link predictors, including Preferential Attachment (PA) [9] and

Jaccard Index (Jac) [69], are not Edge Invariant. The existence/absence of the target

link can change the values of the predictors, which in turn changes the ranking of

focal node pairs. The original PA for a focal node pair i, j is PA(i, j) = |N (i)||N (j)|,

where N (i) is the neighbors of node i. After applying Edge Plus, PAplus(i, j) =

|N (i)∪{j}||N (j)∪{i}|. Similarly, Jacplus(i, j) = |N (i)∩N (j)|/|N (i)∪N (j)∪{i, j}|.

We follow the same protocol in the previous experiment. As shown in Table 2.3,

Edge Plus can significantly improve the performance of the PA predictor on several

datasets. With FakeEdge, PA performs over 10% better on Pubmed. Surprisingly,

even though PA is not able to predict the links on Router dataset with AUC score

lower than 50%, PA with Edge Plus achieves 74% AUC score and becomes a functional

30

TABLE 2.3

FAKEEDGE ON HEURISTIC METHODS.

Models Fake Edge Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

PA

Original 63.15±1.38 58.20±2.18 71.72±0.36 88.84±1.41 66.19±1.82 90.05±0.52 82.10±1.15 75.72±2.20 44.47±1.58 48.20±0.83 91.99±0.78

Edge Plus 65.05±1.31 61.05±1.96 84.04±0.37 90.36±1.45 65.29±1.97 90.47±0.49 82.66±0.98 75.98±2.31 46.83±1.61 74.03±1.05 91.98±0.78

Jac

Original 71.76±0.85 66.33±1.23 64.41±0.20 88.89±1.55 92.19±0.80 86.82±0.60 88.49±0.53 78.77±1.94 58.18±0.50 55.77±0.55 81.43±0.92

Edge Plus 71.77±0.85 66.33±1.23 64.42±0.20 89.65±1.45 92.19±0.80 87.20±0.58 88.52±0.53 79.33±1.88 58.18±0.50 55.77±0.55 81.79±0.90

Heuristic methods with/without FakeEdge (AUC). The best results are highlighted in bold.

link predictor. In terms of Jac, we observe that Jac with FakeEdge can only gain

marginal improvement. This is because that even though Jac is dependent on the

existence of target link, the change of Jac index is relatively small when the existence

of the target link flips.

2.7 Conclusion

Dataset shift is arguably one of the most challenging problems in the world of

machine learning. However, to the best of our knowledge, none of the previous

studies sheds light on this notable phenomenon in link prediction. In this paper, we

studied the issue of dataset shift in link prediction tasks with GNN-based models.

We first unified several existing models into a framework of subgraph link prediction.

Then, we theoretically investigated the phenomenon of dataset shift in subgraph

link prediction and proposed a model-agnostic technique FakeEdge to amend the

issue. Experiments with different models over a wide range of datasets verified the

effectiveness of FakeEdge.

31

CHAPTER 3

ROBUST GNNS BY DATA AUGMENTATION

3.1 Overview

Chapter 3 addresses the robustness challenges of GNNs from a data-oriented

perspective by focusing on the quality and completeness of the underlying graph data.

Although link prediction (LP) is a core task within graph representation learning,

the presence of noisy or incorrect edges, as well as missing edges, can severely limit

the generalization capability of LP models. To overcome these issues, we introduce

COmplete and REduce (CORE), a novel data augmentation method inspired by the

Information Bottleneck principle. CORE enhances the robustness of LP models by

simultaneously identifying and removing spurious edges and recovering essential but

missing links, thereby generating more reliable and predictive graph data. Extensive

empirical evaluation on multiple benchmark datasets confirms the effectiveness of

CORE, demonstrating its superiority over current methods.

This chapter primarily builds upon a pre-print manuscript [39] in collaboration

with Zhichun Guo, and Nitesh V. Chawla.

3.2 Introduction

Graph-structured data is ubiquitous in various domains, including social net-

works [91], recommendation systems [85], and protein-protein interactions [141]. Link

prediction (LP), the task of predicting missing or future edges in a graph, is a funda-

mental problem in graphs. Over the years, a plethora of link prediction algorithms

32

have been proposed, ranging from heuristics-based link predictors [4, 78, 91, 191] to

more sophisticated graph neural network (GNN) based methods [81, 118, 178].

One major challenge in LP is the quality, reliability, and veracity of graph data.

In many real-world scenarios, data collection can be difficult due to factors such as

incomplete information, errors in data labeling, and noise introduced by measure-

ment devices or human mistakes [26, 196]. As a consequence, the graph constructed

based on the collected data may contain missing or erroneous edges. This can subse-

quently impact the performance of LP models. Moreover, the excessive dependence

on noisy graphs can impede the model’s capability in distinguishing the real and

spurious edges, which harms the generalizability of models. Therefore, the question

of preserving the robust learning capacity and generalizability of LP models on noisy

graphs remains unresolved.

To mitigate the degradation of model performance on noisy data with inferior

data quality, data augmentation (DA) has emerged as a powerful technique by arti-

ficially expanding the training dataset with transformed versions of the original data

instances, primarily in the field of computer vision [89, 133]. However, in the con-

text of LP, few works have been proposed to overcome the limitation of models on

noisy graphs [186]. For example, CFLP [185] employs causal inference by comple-

menting counterfactual links into the observed graph. Edge Proposal [134] seeks to

inject highly potential edges into the graph as a signal-boosting preprocessing step.

Nevertheless, these works fail to consider the inherent noise or that brought by the

augmentation process, holding an implicit assumption that the observed graph truly

reflects the underlying relationships

In this paper, we investigate how to augment the graph data for link prediction

to accomplish two primary goals: eliminating noise inherent in the data and

recovering missing information in graphs. To augment with robust, diverse,

and noise-free data, we employ the Information Bottleneck (IB) principle [142, 143].

33

IB offers a framework for constraining the flow of information from input to output,

enabling the acquisition of a maximally compressed representation while retaining its

predictive relevance to the task at hand [6]. Learning such an effective representation

is particularly appealing because it gives us a flexible DA pipeline where we can

seamlessly integrate other DA techniques without concern for the introduction of

extraneous noise they might bring.

Present work. We introduce COmplete and REduce (CORE), a novel data aug-

mentation framework tailored for the link prediction task. CORE comprises of two

distinct stages: the Complete stage and the Reduce stage. The Complete stage

addresses the incompleteness of the graph by incorporating highly probable edges,

resulting in a more comprehensive graph representation. One can plug in any link

predictors that may be advantageous in recovering the graph’s structural informa-

tion, despite the possibility of introducing noisy edges. The Reduce stage, which is

the crux of the proposed method, operates on the augmented graph generated by

the Complete stage. It aims to shrink the edge set while preserving those critical to

the link prediction task. In doing so, the Reduce stage effectively mitigates any mis-

leading information either inherently or introduced during the Complete stage. By

adhering to the IB principle, the Reduce stage yields a minimal yet sufficient graph

structure that promotes more generalizable and robust link prediction performance.

However, unlike DA in images where transformations can be applied indepen-

dently, modifications to a single node or edge in a graph inevitably impact the

surrounding neighborhood. This arises from the interdependence of data instances

within a graph. Under these conditions, applying a universal DA to different in-

stances in a graph may be suboptimal, as a specific augmentation could benefit one

link prediction while negatively affecting another. For example, in Figure 3.1, the

inference of different links may favor adding different edges into their neighborhood.

34

Adams
arts

comics
games

Kate
arts

sports

Terry
sportsPeter

arts

Colin
arts

comics
games

James
sports
games

Adams

Kate
TerryPeter

Colin

James

Henry
sports

Henry

BobBob
sports

Adams

James

Adams

Kate
Terry

Colin

James

Bob

Bob

Henry

Complete Stage Reduce Stage
Original Graph Inflated Graph

Original links Missing linksTarget links
Inflated edges Pruned edges

Pruned Graph

Figure 3.1: Overview of our CORE framework. It consists of two stages: (1) the
Complete stage, which aims to recover missing edges by incorporating highly proba-
ble edges into the original graph, and (2) the Reduce stage, which is the core com-
ponent of our method, designed to prune noisy edges from the graph in order to
prevent overfitting on the intrinsic noise and that introduced by the Complete stage.
Recognizing that predicting different links may require distinct augmentations, we
extract the surrounding subgraph of each link and apply independent augmentations
accordingly. In the social network example illustrated, assuming that Adams and
Terry will become friends while Adams and Henry will not, tailored augmentations
can facilitate more accurate link prediction by the model.

To address this dependency issue within a graph, we recast the link prediction task

as a subgraph link prediction [37, 178]. In this context, we can apply different DAs to

neighboring links without concerns about potential conflicts between their preferred

augmentations. This approach allows for more targeted and effective augmentation,

ultimately enhancing the performance of our CORE framework in link prediction

tasks.

3.3 Preliminary

In this section, we introduce the notations and concepts utilized throughout the

paper.

35

Graph and link prediction. Let G = (V,E,X) represent an undirected graph,

where V is the set of nodes with size n, indexed as {i}ni=1. Nv is the neighborhood of

the node v. E ⊆ V ×V denotes the observed set of edges, and Xi ∈ X represents the

feature of node i. The unobserved set of edges, denoted by Ec ⊆ V ×V \E, comprises

either missing edges or those expected to form in the future within the original graph

G. Thus, for those links (i, j) ∈ E∪Ec, we can assign label Y = 1 and regard them as

positive samples, while the rest {(i, j) ⊆ V ×V |(i, j) /∈ E∪Ec} we assign label Y = 0

as negatives. Based on the given graph G, the goal of the link prediction task is to

compute the nodes similarity scores to identify the unobserved set of edges Ec [93].

Numerous heuristic models are proposed for link prediction task over time, including

Common Neighbor (CN) [91], Adamic-Adar index (AA) [4], Resource Allocation

(RA) [191], and Katz index [78]. While these traditional approaches effectively utilize

the topological structure of the graph, GNN-based models [81, 178] exhibit a superior

ability to exploit both the structure and node attributes associated with the graph.

Subgraph link prediction. Even though some link predictors, such as the Katz

index and PageRank [15], require the entire graph to calculate similarity scores for

a target link, many others only rely on a local neighborhood surrounding the target

link for computation. For instance, the Common Neighbor predictor necessitates

only a 1-hop neighborhood of the target link, and generally, an l-layer GNN requires

the l-hop neighborhood of the target link. Moreover, Zhang and Chen [178] has

demonstrated that local information can be sufficient for link prediction tasks. As

a result, the link prediction task for a specific target link can be reformulated as

a graph classification problem based on the local neighborhood of the target link,

aiming to determine whether the link exists or not [37]. Formally, given a subgraph

Gl
(i,j) induced by the nodes l-hop reachable from node pair (i, j), a subgraph link

prediction is a task of predicting the label Y ∈ {0, 1} for the subgraph, where Y = 1

36

indicates that the target link exists, and vice versa.

Data augmentation. Data augmentation is the process of expanding the input

data by either slightly perturbing existing data instances or creating plausible vari-

ations of the original data. This technique has been proven effective in mitigating

overfitting issues during training, particularly in the fields of computer vision [30]

and natural language processing [49]. In the realm of graph representation learning,

several DA methods have been proposed [186] to address challenges such as over-

smoothing [127], generalization [26], and over-squashing [145]. However, most graph

data augmentation techniques have primarily focused on node and graph classifica-

tion tasks, with relatively limited exploration in the context of LP [185].

3.4 Proposed framework: CORE

In this section, we present our proposed two-stage data augmentation framework

for LP, referred to as CORE. We begin by introducing the Complete stage, which aims

to recover missing edges in the original graph. Following this, we discuss the Reduce

stage, the most critical component of our proposed method, designed to eliminate

noisy and spurious edges in the graph. Finally, we outline a practical implementation

that leverages the Graph Information Bottleneck (GIB) [163] for pruning inflated

edges. The overview of the framework is shown in Figure 3.1.

3.4.1 Complete stage: inflating missing connections

The data collection process is inherently susceptible to errors, which can result in

incomplete or even erroneous structural information in the original graph. Further-

more, the nature of the link prediction task involves identifying missing or potentially

newly forming edges, implicitly assuming that graph data is incomplete. Therefore,

mitigating the incompleteness of graph structures can be advantageous. In Theo-

37

rem 3, we will also see how inflating missing edges can help identify the most crucial

component that determines whether a link should exist.

Implementation. We begin with a simple and straightforward method introduced

by Singh et al. [134] to inflate the original graph with additional edges. Although

more sophisticated graph completion methods [155] can also be plugged into the

Complete stage, we find that employing a straightforward, low-computational-cost

algorithm is sufficient for augmenting the graph structures effectively.

Due to the sparsity of most real-world graphs, the number of potentially missing

edges is proportional to the quadratic of the number of nodes O(n2). Scoring all

non-connected node pairs can be computationally prohibitive. To reduce the size

of the candidate node pairs, we only consider those non-connected pairs that have

at least one common neighbor for potential addition to the graph. Subsequently,

we can use any link prediction method to score these candidate node pairs. For

large-scale datasets, like OGB-Collab [62], we can rely on the faster computation

of non-parametric heuristic methods. For graphs of moderate size, one may choose

any heuristic methods or GNN-based methods like GCN [82] and SAGE [59]. Note

that only scoring node pairs with common neighbors is a pragmatic choice. Most

real-world graphs, governed by popular models such as the assortative SBM [60] or

the Watts–Strogatz model [158], exhibit higher connection likelihood for node pairs

with shared neighbors. Therefore, this design balances computational efficiency with

empirical effectiveness, a trade-off we believe to be minimal but crucial for practical

purposes. An empirical investigation can be found in Appendix B.3.6.

After scoring all the candidate node pairs, we sort them based on their similarity

scores and select the top k node pairs Eext to add to the original graph, where k is a

hyperparameter. Thus, the graph G becomes G+ = (V,E ∪Eext,X). It is important

to note that, although we add these predicted links to the graph, we mark them as

38

inflated edges to differentiate them from the original graph. These inflated edges will

not be used as training signals for later stages but will only serve as a complement to

the graph’s topological structure. This distinction is crucial, as we can tolerate the

noisy edges in the input space but do not want to introduce any noise to the labels

of LP in our DA process.

3.4.2 Reduce stage: pruning noisy edges

The Reduce stage is the central aspect of our CORE data augmentation frame-

work. Inspired by GSAT [103], we leverage GIB [163] to parameterize a reducer,

which constrains the graph structure to a minimal yet sufficient graph component for

link prediction. The resulting graph component is expected to achieve three goals: (1)

remove task-irrelevant information from the data (the regularization in Equation 3.6);

(2) prune the graph structures so that only the most predictive graph components

remain for inference (the log-likelihood in Equation 3.6); and (3) provide diversified

augmentation to the original data (the edge sampling step). We begin by introducing

the necessity of decoupling the DA for each link. Then we discuss the GIB objective

and its tractable variational bound. Finally, we present the implementation of our

data augmentation in the Reduce stage.

Interdependence of graph data. In the link prediction task, the data instances

we are interested in are the links in the graph. However, unlike images, links in

a graph are correlated; the existence and properties of each link are dependent on

one another. Consequently, when applying DA to a specific link, it will inevitably

affect the environment of other links, especially those in close proximity. This can

yield suboptimal results, as links will compete with each other to obtain the best

augmentation for their own sake. Furthermore, it becomes computationally infeasible

to apply the IB principle when the i.i.d assumption does not hold [163].

39

Figure 3.2: The Reduce stage commences with the inflated subgraph G+
(i,j) surround-

ing the target link (i, j). We first apply a GNN to encode node representations, fol-
lowed by edge representation derived from the node encodings. To compute sampling
probability scores for each edge, we utilize an attention mechanism that combines the
edge representation with the subgraph pooling. Since the subgraph pooling encapsu-
lates information from the entire subgraph and is employed for target link prediction,
the generated probability scores reflect not only the edge’s inherent property but also
its relationship to the target link (i, j). Subsequently, we sample each edge using a
Bernoulli distribution based on its probability to obtain the pruned graph. Finally,
the pruned graph G±

(i,j) is fed back into the model as augmented input for enhanced
graph structures.

To address these issues, we reformulate LP as a subgraph link prediction. Sub-

graph link prediction allows for decoupling the overlapping environments of each link,

making it possible to have a different DA for each link. Specifically, for each node

pair (i, j), we extract its l-hop enclosing subgraph G+;l
(i,j) from the entire graph G+.

To simplify notation when there is no ambiguity, we may omit the number of hops

and represent the subgraph as G+
(i,j). It is worth noting that prior works also adopt a

similar strategy to handle the non i.i.d nature of graph data [156, 187] when perturb-

ing the data. In Section 3.5.3, we empirically examine the optimal DAs tailored to

different target links. Notably, the DA derived from a single edge may vary depending

40

on the target link under consideration.

GIB. In general, IB aims to learn a concise representation Z from the input X that

is also expressive for the output y, measured by the mutual information between the

latent representation and input/output [6, 142]. Thus, the objective is:

max
Z

I(Z, Y) s.t. I(X,Z) ≤ Ic. (3.1)

where I(·, ·) denotes the mutual information and Ic is the information constraint. In

the context of LP, we can regard the enclosing subgraph G+
(i,j) as input X, including

both the node attributes and graph structure. Y is the link’s existence at (i, j), and

Z is the latent representation.

While the original GIB [163] constrains the information flow from both node

attributes of a graph and graph structures, we propose to only constrain the structural

information in our data augmentation for the link prediction task. Compared to node

attributes in a graph, graph structures are overwhelmingly more critical for the link

prediction task [93, 118]. Moreover, many graphs without node attributes still exhibit

the need for link prediction. Thus, we define our objective as:

max
G±

(i,j)
∈Gsub(G

+
(i,j)

)
I(G±

(i,j), Y) s.t. I(G±
(i,j), G

+
(i,j)) ≤ Ic. (3.2)

where G±
(i,j) ∈ Gsub(G

+
(i,j)) is a subgraph pruned from the inflated graph G+

(i,j). In

other words, we aim to find the subgraph of the inflated graph that is simultane-

ously the most predictive and concise for the link prediction task. We assume that

this graph reduction process can prune the noisy edges introduced by the previous

Complete stage while retaining the beneficial added information. Our method shares

a similar spirit with GSAT [103] and IB-subgraph [175], as we explore finding a

subgraph structure that is most essential for the task.

41

Next, by introducing a Lagrange multiplier β, we obtain the unconstrained version

of the objective:

min
G±

(i,j)
∈Gsub(G

+
(i,j)

)
−I(G±

(i,j), Y) + βI(G±
(i,j), G

+
(i,j)). (3.3)

where β is the hyperparameter to balance the tradeoff between predictive power and

compression.

The computation of the mutual information term I(·, ·) is, in general, computa-

tionally intractable. To address this issue, we follow the works of Alemi et al. [6], Miao

et al. [103], Wu et al. [163] to derive a tractable variational upper bound for Equa-

tion 3.3. The detailed derivation is provided in Appendix B.4. To approximate the

first term I(G±
(i,j), Y), we derive a variational lower bound. The lower bound can be

formulated as:

I(G±
(i,j);Y) ≥ E[log qθ(Y |G±

(i,j))]. (3.4)

Essentially, qθ is the predictor of our model, which can be a parameterized GNN.

For the second term I(G±
(i,j), G

+
(i,j)), we derive an upper bound by introducing a

variational approximation r(G±
(i,j)) for the marginal distribution of G±

(i,j):

I(G±
(i,j), G

+
(i,j)) ≤ E[KL(pϕ(G

±
(i,j)|G

+
(i,j))||r(G

±
(i,j))] (3.5)

where pϕ is the reducer to prune noisy edges. Then we can put everything together

and get the empirical loss to minimize:

L ≈ 1

|E|
∑

(i,j)∈E

[− log qθ(Y |G±
(i,j)) (3.6)

+ βKL(pϕ(G
±
(i,j)|G

+
(i,j))||r(G

±
(i,j)))]. (3.7)

42

Next, we discuss how to parameterize the predictor qθ and the reducer pϕ in the

Reduce stage, as well as the choice of marginal distribution r(G±
(i,j)).

3.4.3 Implementation of the Reduce stage.

The overall architecture of the Reduce stage is shown in Figure 3.2. It is important

to note that both the predictor qθ and the reducer pϕ utilize a GNN encoder to encode

the graph representation for either prediction or graph pruning purposes. These two

components can share a common GNN encoder with the same parameters, as the

entire training of the Reduce stage is end-to-end. This shared encoder allows for

more efficient learning and reduces the number of parameters required in the model.

Subgraph encoding. The Reduce stage begins with encoding the inflated graph

G+
(i,j) using a GNN. We can choose any Message Passing Neural Network (MPNN) [57]

as the instantiation of the GNN encoder. The MPNN can be described as follows:

m(l)
v = AGG

(
{h(l)

u ,h
(l)
v ,∀u ∈ Nv}

)
, (3.8)

h(l+1)
v = UPDATE

(
{h(l)

v ,m
(l)
v }
)
. (3.9)

where a neighborhood aggregation function AGG(·) and an updating function

UPDATE(·) are adopted in the t-th layer of a T -layer GNN. Consequently, {h(T)
v |v ∈

G+
(i,j)} represents the node embeddings learned by the GNN encoder.

A typical link prediction method, such as GAE [81] or SEAL [178], can make a pre-

diction by pooling the node representations, namely hG+
(i,j)

= POOL
(
h
(T)
v |v ∈ G+

(i,j)

)
,

where hG+
(i,j)

is the final representation for the node pair (i, j). In our data augmen-

tation approach, however, we first need to prune the noisy edges in order to obtain

more concise graph structures.

43

Reduce by edge sampling. After encoding the node representations, we proceed

to prune the noisy edges in the inflated graph. We first represent each edge (u, v)

in the inflated graph G+
(i,j) by concatenating the node representations of the two end

nodes and a trainable embedding indicating whether this edge comes from the original

graph G(i,j) or the Complete Stage. Specifically, we obtain h(u,v) =
[
hu;hv; h̃(u,v)

]
,

where [·; ·] is the concatenation operation. Appending h̃(u,v) to the edge representation

enables the model to be aware of whether the edges are originally in the graph or

introduced by link predictors at the Complete stage.

In this setting, the edge representation h(u,v) solely contains information about its

structural role in the inflated graph. While structurally similar edges might influence

distinct target node pairs differently, this representation does not convey information

about how the edge (u, v) in the local subgraph G+
(i,j) affects the prediction of the

target node pair (i, j). To make the edge representation directly interact with the

downstream link prediction task, we further apply an attention mechanism [147,

149] and attend it to the overall representation of the entire subgraph to define its

importance for link prediction. We compute this as follows:

a(u,v) = Qϕ(hG+
(i,j)

)TKϕ(h(u,v))
/√

F ′′, (3.10)

where Qϕ and Kϕ are two MLPs and F ′′ is the output dimension of the MLPs.

Unlike GAT [149], which directly applies the attention scores as edge weights in

each layer, we use these scores a(u,v) to sample the edges to diversify the views of

the graph. For each edge (u, v) in G+
(i,j), we sample an edge mask from the Bernoulli

distribution ω(u,v) ∼ Bern(sigmoid(a(u,v))), which masks off unnecessary edges in the

graph for LP. To ensure the gradient can flow through the stochastic node here, we

utilize the Gumbel-Softmax trick [70, 96]. This procedure gives us a way to generate

the reduced subgraph G±
(i,j) by the variational distribution pϕ(G

±
(i,j)|G

+
(i,j)).

44

To control the marginal distribution in Equation 3.5, we follow [103, 163] and

apply a non-informative prior r(G̃(i,j)). In other words, G̃(i,j) is obtained by sampling

edge connectivity ω̃(u,v) ∼ Bern(γ) for every node pair (u, v) in G+
(i,j). γ is a hyper-

parameter. Regardless the graph structure of G±
(i,j), we connect (u, v) if ω̃(u,v) = 1

and disconnect the rest. This is essentially an Erdös-Rényi random graph [46]. The

derivation of the KL loss term with respect to the marginal distribution is detailed

in Appendix B.2.1.

Prediction based on pruned subgraph. Once we obtain the edge mask ω, we

can encode the subgraph and make a link prediction. The edge mask can be regarded

as the edge weight of the inflated graph. In this way, the edge weight plays the role

of a message passing restrictor to prune the noisy edges in the inflated graph, which

modifies the message passing part of Equation 3.8 as follows:

m(l)
v = AGG

(
{ω(u,v) ∗ h(l)

u ,h
(l)
v , ∀u ∈ Nv}

)
. (3.11)

Using the representation learned from the reduced subgraph G±
(i,j), we can feed them

into a pooling layer plus an MLP to estimate Y . This models the distribution

qθ(Y |G±
(i,j)).

3.4.4 Theoretical analysis

In this section, we provide a theoretical foundation for the integration of the

Complete and Reduce stages in our data augmentation approach for link prediction

tasks.

Theorem 3. Assume that: (1) The existence Y of a link (i, j) is solely determined by

its local neighborhood G∗
(i,j) in a way such that p(Y) = f(G∗

(i,j)), where f is a deter-

ministic invertible function; (2) The inflated graph contains sufficient structures for

45

prediction G∗
(i,j) ∈ Gsub(G

+
(i,j)). Then G±

(i,j) = G∗
(i,j) minimizes the objective in Equa-

tion 3.3.

The first assumption in Theorem 3 is consistent with a widely accepted local-

dependence assumption [163, 178] for graph-structured data. The second assumption

highlights the importance of incorporating enough structural information into the

graph in the Complete Stage prior to executing the reduce operation. Even though

we assume that the link existence Y is causally determined by G∗
(i,j), there still can

be some other spurious correlations between Y and G+
(i,j). These correlations can be

brought by the environments [8, 86, 162], and the shift of such correlations in the

testing phase can cause performance degradation for LP models.

Theorem 3 implies that under mild assumptions, optimizing the objective in Equa-

tion 3.3 can help us uncover the most crucial component of the graph, which deter-

mines whether a link should exist. As a result, our approach enables the elimination

of noisy and spurious edges, thereby enhancing the generalizability of link prediction

models. The proof can be found in Appendix B.5.

3.5 Experiments

In this section, we present experimental results for our proposed method. We first

assess the performance of CORE in comparison to various baseline DA techniques

for the link prediction task. Then, we illustrate that heuristic link predictors can

also benefit from the augmented graph structure by CORE. Furthermore, we demon-

strate its robustness against adversarial edge perturbations. Further details of the

experiments can be found in Appendix B.2.

3.5.1 Experimental setup

Baseline methods. We select three heuristic link predictors for non-GNN models:

CN [110], AA [4], and RA [191]. For GNN models that exploit node-level representa-

46

TABLE 3.1

LINK PREDICTION PERFORMANCE.

Model Type Models C.ele USAir Yeast Router CS Physics Computers Collab

Heuristics

CN 54.31±0.00 82.59±0.00 72.71±0.00 9.11±0.00 38.99±0.00 63.44±0.00 25.48±0.00 61.37±0.00

AA 57.34±0.00 87.53±0.00 72.71±0.00 9.11±0.00 67.44±0.00 74.38±0.00 31.14±0.00 64.17±0.00

RA 64.34±0.00 87.53±0.00 72.71±0.00 9.11±0.00 67.44±0.00 74.68±0.00 34.17±0.00 63.81±0.00

Network
Embedding

Node2Vec 50.82±3.24 74.12±2.12 82.11±2.74 32.53±4.23 63.32±3.84 60.72±1.85 28.48±3.42 48.88±0.54

DeepWalk 48.62±2.82 73.80±1.98 81.24±2.38 31.97±3.92 64.18±3.98 60.58±2.24 27.49±3.08 50.37±0.34

LINE 52.40±2.02 74.82±3.40 82.45±2.75 34.39±3.86 63.96±2.83 61.90±1.93 27.52±2.98 53.91±0.00

GNNs

GCN 57.32±4.52 82.14±1.99 80.33±0.73 35.16±1.60 60.69±8.56 69.16±4.61 32.70±1.97 44.75±1.07

SAGE 42.14±5.62 82.85±4.01 78.34±1.08 35.76±2.97 31.44±8.24 22.87±22.53 14.53±6.28 48.10±0.81

SEAL 67.32±2.71 91.76±1.17 82.50±2.08 60.35±5.72 65.23±2.08 71.83±1.44 35.80±1.38 63.37±0.69

ELPH 66.06±3.00 88.16±1.21 78.92±0.78 59.50±1.89 67.84±1.27 69.60±1.22 33.64±0.77 64.58±0.32

NCNC 60.42±1.89 83.22±0.82 73.11±2.07 57.13±0.66 65.73±2.57 72.87±1.80 37.17±1.86 65.97±1.03

DAs

Edge Proposal 70.19±2.95 86.35±1.35 81.59±0.51 36.20±2.61 62.44±2.68 70.34±2.89 33.76±2.08 65.48±0.00

CFLP 54.36±3.41 89.09±1.12 73.57±1.06 50.62±3.33 OOM OOM OOM OOM

Node Drop 68.76±2.77 90.79±1.40 81.45±3.10 61.76±5.72 64.80±2.52 70.51±1.87 35.94±2.30 62.57±0.96

Edge Drop 66.92±4.29 92.12±0.96 81.92±1.94 59.66±7.18 67.27±1.64 72.52±1.88 36.91±0.94 63.20±0.88

Ours

Complete Only 72.10±1.70 91.84±1.23 82.70±2.20 63.18±4.01 67.06±1.01 71.83±1.44 35.80±1.38 63.57±0.48

Reduce Only 70.22±3.69 92.35±0.95 84.22±1.58 65.40±2.27 67.79±1.50 74.73±2.12 37.88±1.10 64.24±0.60

CORE 76.34±1.65 93.14±1.09 84.67±1.13 65.64±1.28 69.67±1.36 74.73±2.12 37.88±1.10 65.62±0.50

p-values 0.0001** 0.0394** 0.0096** 0.0105** 0.0060** 0.0486** 0.3126 -

Link prediction performance evaluated by Hits@50. The best-performing method is high-
lighted in bold, while the second-best performance is underlined. OOM means out of memory.

tion, we employ the two most widely used architectures: GCN [82] and SAGE [59].

For the link prediction utilizing edge-level representation, we choose SEAL [178],

ELPH [22] and NCNC [155] as the baseline.

We select Edge Proposal [134] and CFLP [185], as two representative DA baselines

with GCN as backbone. For SEAL, we evaluate two standard graph perturbation

techniques [174], Node Drop [120] and Edge Drop [127]. Then, we present our results

with Complete Only, Reduce Only, and the combined CORE. Details about these

baseline models can be found in Appendix B.3.1.

47

Figure 3.3: CORE can enhance the graph structure and even boost heuristics link
predictors (Hits@50).

Benchmark datasets. We select four attributed and four non-attributed graphs

as the benchmark. The attributed graphs consist of three collaboration networks,

CS, Physics [131] and Collab [163], as well as a co-purchased graph, Comput-

ers [131]. The non-attributed graphs include USAir [10], Yeast [150], C.ele [158],

and Router [136]. The comprehensive descriptions and statistics of the benchmark

datasets can be found in Appendix B.3.2.

Evaluation protocols. We follow the evaluation settings from previous work [185]

and split the links as 10% for validation, 20% for testing. For Collab [62], we use the

official train-test split. The evaluation metric is Hits@50, which is widely accepted

for evaluating link prediction tasks [62]. The results are reported for 10 different runs

with varying model initializations.

3.5.2 Experimental results

Link prediction. Table 3.1 presents the link prediction performance of Hits@50

for all methods. Given the strong backbone model SEAL, we observe that our pro-

posed data augmentation can further improve its performance on various datasets.

In comparison to SEAL without any DA techniques, CORE consistently boosts the

48

performance by 1% to 9% in terms of Hits@50. More specifically, both Complete

Only and Reduce Only can increase the model capability by different margins. More-

over, by combining those two stages together, CORE can almost always achieve the

best performance and significantly outperforms baselines. Our results also reveal

that CORE yields greater performance improvements when the available data size is

limited. This observation suggests that models may be prone to overfitting to noise in

low-data regimes. However, CORE effectively mitigates this issue by learning an un-

derlying (Bernoulli) distribution associated with the graph structures, and prevents

the model from overfitting to idiosyncratic structural perturbations.

Learnable and transferrable. One potential concern with using the reducer

of CORE, which is a neural network possessing the capability of universal approxi-

mation [61], is that the performance improvement might be attributed to the overpa-

rameterization [11] of the model instead of the quality of our augmented graph. To

address this concern and validate the efficacy of CORE as a DA method, we decouple

the reducer from the model and investigate its ability to extract a generalizable view

of the graph. We feed the augmented graph generated by the reducer to three heuris-

tic link predictors: CN, AA, and RA. The results of this experiment can be found

in Figure 3.3. Our findings demonstrate that the graph refined by CORE consis-

tently improves the performance of heuristic link predictors. This outcome validates

CORE’s ability to learn a transferable and generalizable DA.

Robustness. To assess the robustness of our graph data augmentation method,

we conduct additional experiments using an unsupervised graph poisoning attack,

CLGA [183], to adversarially perturb the graph structures at varying attack rates.

The results of this analysis can be found in Table 3.2 and Table B.2. Intriguingly,

we observe that the advanced link prediction models, like SEAL, ELPH and NCNC,

49

exhibits a higher vulnerability to adversarial attacks compared to other baseline mod-

els. The capability to capture complex structural relationships of these expressive

models renders them more sensitive to structural changes. However, our proposed

method, CORE, leverages the robustness inherent in IB [6, 163] to enhance the model

resilience by pruning spurious or even harmful perturbations. These findings suggest

that the performance improvement offered by our method may be attributed to its

ability to mitigate model vulnerability to adversarial perturbations.

GIN as backbone. We examine whether CORE remains an effective DA tech-

nique when utilizing a different backbone model. In this case, we choose the Graph

Isomorphism Network (GIN) [167], one of the most expressive GNNs, ensuring that

the learned representation can encode structural information and guide downstream

data augmentation. The results are presented in upper half of Table 3.3. We observe

that, with GIN as the backbone, CORE can still improve link prediction performance

over the baseline, yielding a 1% to 10% improvement. It indicates that CORE can

be effectively integrated with other backbone models.

Information constraints and stochastic sampling. We further investigate the

necessity of retaining the information constraint term in the objective function and

the stochastic sampling component in the augmentation process. The results are

displayed in the lower half of Table 3.3. By setting β = 0, the Reduce stage of our

method loses the ability to constrain the information flow from the inflated graph.

This leads to significant performance degradation, suggesting that the regularization

term helps prevent the model from overfitting. Additionally, the performance de-

clines when removing the stochastic sampling component and directly applying the

attention score as the edge weight. This demonstrates that incorporating sampling

in data augmentation can potentially expose the link prediction model to a wider

50

range of augmented data variations.

3.5.3 Different DAs for different target links

Figure 3.4: Histogram representing the standard deviations (std) of the learned edge
mask ω for each edge within subgraphs associated with different target links. The
frequent occurrence of larger std values implies substantial disagreement on the op-
timal DAs when focusing on different target links.

One of the unique designs of our methods is to augment each target link in a

separate environment of its own. Here, we empirically investigate the necessity of

isolating the DAs. We collect the edge mask ω for each edge within the subgraphs

but across different target links. Then, for a set of such edge masks of the same

edge, we calculate their standard deviations to indicate how much the learned edge

masks ω agree or disagree with each other when augmenting different target links.

The results are presented in Figure 3.4.

As it shows, while a portion of edges may have similar augmentation (small stan-

dard deviations), a significant part of them conflicts with each other (large standard

deviations). On C.ele and Router, CORE will learn different DAs for nearly half of

the edges associated with different target links. On Yeast, the majority of edges are

51

augmented differently by CORE. This result indicates that it is necessary to isolate

the DA effect for each target link.

3.5.4 Additional ablation studies

To further substantiate the efficacy of our proposed DA method, we carry out

extensive ablation studies. Due to page constraints, these detailed investigations are

presented in the appendix. They include an analysis on the impact of different com-

ponents of the Reduce stage (see Appendix B.3.3), a study on parameter sensitivity

(see Appendix B.3.4), and evaluations of CORE when integrated with GCN and

SAGE backbones (see Appendix B.3.5).

3.6 Conclusion

In this paper, we have introduced CORE, a novel data augmentation technique

specifically designed for link prediction tasks. Leveraging the Information Bottle-

neck principle, CORE effectively eliminates noisy and spurious edges while recovering

missing edges in the graph, thereby enhancing the generalizability of link prediction

models. Our approach yields graph structures that reveal the fundamental relation-

ships inherent in the graph. Extensive experiments on various benchmark datasets

have demonstrated the effectiveness and superiority of CORE over competing meth-

ods, highlighting its potential as a leading approach for robust link prediction in

graph representation learning.

52

TABLE 3.2

RESULTS OF ADVERSARIAL ROBUSTNESS.

Datasets Methods No Adv 10% 30% 50%

C.ele

GCN 57.32±4.52 59.63±3.41 54.97±3.08 46.76±3.90

SAGE 42.14±5.62 31.98±6.26 35.15±3.38 28.32±5.74

SEAL 67.32±2.71 60.93±2.23 58.55±1.46 51.00±2.32

ELPH 66.06±3.00 62.28±2.48 56.62±2.48 50.40±0.85

NCNC 60.42±1.89 52.10±1.29 53.40±1.40 50.26±0.93

Edge Proposal 70.19±2.95 64.71±1.86 58.60±2.14 50.93±2.00

CFLP 54.36±3.41 51.75±2.79 46.49±3.30 42.83±5.16

CORE 76.34±1.65 72.03±3.19 63.78±2.24 58.16±1.52

USAir

GCN 82.14±1.99 84.87±1.22 83.06±1.73 80.19±0.77

SAGE 82.85±4.01 78.21±2.81 74.82±3.28 73.88±3.65

SEAL 91.76±1.17 85.51±1.70 84.80±2.95 81.53±3.95

ELPH 88.16±1.21 86.71±0.94 85.08±0.96 84.54±0.50

NCNC 83.22±0.82 83.88±0.78 83.44±0.50 83.18±0.53

Edge Proposal 86.35±1.35 86.42±1.34 84.95±0.74 80.94±1.66

CFLP 89.09±1.12 86.53±1.74 77.26±4.24 80.32±2.44

CORE 92.69±0.75 89.72±1.06 88.02±1.13 86.71±2.06

Results of adversarial robustness for different models on C.ele and USAir datasets. The
attack rates of 10%, 30%, and 50% represent the respective ratios of edges subjected to
adversarial flips by CLGA [183].

53

TABLE 3.3

ABLATION STUDY.

Methods C.ele USAir Router Yeast

GIN as the backbone model

GIN 62.77±2.33 87.22±2.70 60.22±2.09 75.38±2.23

Complete Only 71.03±2.18 88.12±1.47 60.22±2.09 75.38±2.23

Reduce Only 64.13±2.84 88.71±1.60 62.81±2.46 78.40±1.34

CORE 72.33±2.62 88.71±1.60 62.81±2.46 78.40±1.34

CORE without sampling or info constraint

NoSample 75.20±1.71 91.51±1.65 64.35±2.49 84.59±1.16

β = 0 74.02±2.45 91.81±1.53 63.90±2.16 83.33±2.05

NoSample-β = 0 73.48±2.52 91.45±1.73 65.09±1.41 84.47±1.49

CORE 76.34±1.65 92.69±0.75 65.47±2.44 84.22±1.58

The upper half of the table presents results for CORE with GIN as the
backbone model, while the bottom half investigates the impact of the balancing
hyperparameter β and edge sampling in the proposed framework.

54

PART II

EFFICIENT GNNS

55

CHAPTER 4

EFFICIENT LINK-LEVEL REPRESENTATION WITH NODE-LEVEL

COMPLEXITY

4.1 Overview

This chapter addresses the efficiency of GNNs by introducing a novel link predic-

tion model that generates link-level structural features with only node-level compu-

tational complexity. Existing GNNs are known to be theoretically limited in their

ability to capture certain critical graph substructures, restricting their expressive ca-

pability. For example, the widely-used Common Neighbor (CN) heuristic cannot be

effectively modeled by standard GNN architectures due to their inherent limitations.

Although explicitly extracting such structural information can enhance model perfor-

mance, it involves quadratic computational costs, making it impractical for large-scale

applications. To overcome this, we demonstrate that, by leveraging the orthogonality

of input vectors, a pure message-passing mechanism can implicitly capture essential

link-level structural features like CN. Motivated by this insight, we propose the Mes-

sage Passing Link Predictor (MPLP), a method capable of approximating link-level

substructures efficiently, maintaining node-level complexity. Experiments conducted

on diverse benchmarks illustrate that MPLP consistently achieves state-of-the-art

performance, highlighting its capability to efficiently approximate critical graph sub-

structures.

This chapter primarily builds upon our collaborative study previously published

in [38] with Zhichun Guo and Nitesh V. Chawla.

56

4.2 Introduction

Link prediction is a cornerstone task in the field of graph machine learning, with

broad-ranging implications across numerous industrial applications. From identify-

ing potential new acquaintances on social networks [91] to predicting protein inter-

actions [141], from enhancing recommendation systems [85] to completing knowl-

edge graphs [195], the impact of link prediction is felt across diverse domains. Re-

cently, with the advent of Graph Neural Networks (GNNs) [82] and more specifi-

cally, Message-Passing Neural Networks (MPNNs) [57], these models have become

the primary tools for tackling link prediction tasks. Despite the resounding success

of MPNNs in the realm of node and graph classification tasks [59, 82, 149, 167], it is

intriguing to note that their performance in link prediction does not always surpass

that of simpler heuristic methods [62].

[182] highlights the limitations of GNNs/MPNNs for link prediction tasks arising

from its intrinsic property of permutation invariance. Owing to this property, isomor-

phic nodes invariably receive identical representations. This poses a challenge when

attempting to distinguish links whose endpoints are isomorphic nodes. As illustrated

in Figure 4.1, nodes v1 and v3 share a Common Neighbor v2, while nodes v1 and v5

do not. Ideally, due to their disparate local structures, these two links (v1, v3) and

(v1, v5) should receive distinct predictions. However, the permutation invariance of

MPNNs results in identical representations for nodes v3 and v5, leading to identical

predictions for the two links. As [182] asserts, such node-level representation, even

with the most expressive MPNNs, cannot capture structural link representation such

as Common Neighbors (CN), a critical aspect of link prediction.

In this work, we posit that the pure Message Passing paradigm [57] can indeed

capture structural link representation by exploiting orthogonality within the vector

space. We begin by presenting a motivating example, considering a non-attributed

graph as depicted in Figure 4.1. In order to fulfill the Message Passing’s requirement

57

Figure 4.1: Isomorphic nodes result in identical MPNN node representation, making
it impossible to distinguish links such as (v1, v3) and (v1, v5) based on these represen-
tations.

for node vectors as input, we assign a one-hot vector to each node vi, such that

the i-th dimension has a value of one, with the rest set to zero. These vectors,

viewed as signatures rather than mere permutation-invariant node representations,

can illuminate pairwise relationships. Subsequently, we execute a single iteration of

message passing as shown in Figure 4.2, updating each node’s vector by summing the

vector of its neighbors. This process enables us to compute CN for any node pair by

taking the inner product of the vectors of the two target nodes.

Figure 4.2: MPNN counts Common Neighbor through the inner product of neigh-
boring nodes’ one-hot representation.

58

At its core, this naive method employs an orthonormal basis as the node signa-

tures, thereby ensuring that the inner product of distinct nodes’ signatures is con-

sistently zero. While this approach effectively computes CN, its scalability poses a

significant challenge, given that its space complexity is quadratically proportional to

the size of the graph. To overcome this, we draw inspiration from DotHash [114] and

capitalize on the premise that the family of vectors almost orthogonal to each other

swells exponentially, even with just linearly scaled dimensions [76]. Instead of relying

on the orthogonal basis, we can propagate these quasi-orthogonal (QO) vectors and

utilize the inner product to estimate the joint structural information of any node

pair.

In sum, our paper presents several pioneering advances in the realm of GNNs for

link prediction:

• We are the first, both empirically and theoretically, to delve into the proficiency
of GNNs in approximating heuristic predictors like CN for link prediction. This
uncovers a previously uncharted territory in GNN research.

• Drawing upon the insights gleaned from GNNs’ capabilities in counting CN,
we introduce MPLP, a novel link prediction model. Uniquely, MPLP discerns
joint structures of links and their associated substructures within a graph, set-
ting a new paradigm in the field.

• Our empirical investigations provide compelling evidence of MPLP’s domi-
nance. Benchmark tests reveal that MPLP not only holds its own but outstrips
state-of-the-art models in link prediction performance.

4.3 Preliminaries and Related Work

Notations. Consider an undirected graph G = (V,E,X), where V represents the

set of nodes with cardinality n, indexed as {1, . . . , n}, E ⊆ V × V denotes the

observed set of edges, and Xi,: ∈ RFx encapsulates the attributes associated with

node i. Additionally, let Nv signify the neighborhood of a node v, that is Nv =

{u|SPD(u, v) = 1} where the function SPD(·, ·) measures the shortest path distance

59

between two nodes. Furthermore, the node degree of v is given by dv = |Nv|. To

generalize, we introduce the shortest path neighborhood N s
v , representing the set of

nodes that are s hops away from node v, defined as N s
v = {u|SPD(u, v) = s}.

Link predictions. Alongside the observed set of edges E, there exists an unob-

served set of edges, which we denote as Ec ⊆ V ×V \E. This unobserved set encom-

passes edges that are either absent from the original observation or are anticipated

to materialize in the future within the graph G. Consequently, we can formulate

the link prediction task as discerning the unobserved set of edges Ec. Heuristics

link predictors include Common Neighbor (CN) [91], Adamic-Adar index (AA) [4],

and Resource Allocation (RA) [191]. CN is simply counting the cardinality of the

common neighbors, while AA and RA count them weighted to reflect their relative

importance as a common neighbor.

CN(u, v) =
∑

k∈Nu
⋂

Nv

1; (4.1)

AA(u, v) =
∑

k∈Nu
⋂

Nv

1

log dk
;

RA(u, v) =
∑

k∈Nu
⋂

Nv

1

dk
.

GNNs for link prediction. The advent of graphs incorporating node attributes

has caused a significant shift in research focus toward methods grounded in GNNs.

Most practical GNNs follow the paradigm of the Message Passing [57]. It can be

formulated as:

m(l)
v = AGGREGATE

(
{h(l)

v ,h
(l)
u ,∀u ∈ Nv}

)
, (4.2)

h(l+1)
v = UPDATE

(
{h(l)

v ,m
(l)
v }
)
,

60

where h
(l)
v represents the vector of node v at layer l and h

(0)
v = Xv,:. For simplicity,

we use hv to represent the node vector at the last layer. The specific choice of the

neighborhood aggregation function, AGGREGATE(·), and the updating function,

UPDATE(·), dictates the instantiation of the GNN model, with different choices

leading to variations of model architectures. In the context of link prediction tasks,

the GAE model [81] derives link representation, h(i, j), as a Hadamard product of

the target node pair representations, h(i,j) = hi ⊙ hj.

Amplifying GNN Expressiveness with Randomness. The expressiveness of

GNNs, particularly those of the MPNNs, has been the subject of rigorous explo-

ration [167]. A known limitation of MPNNs, their equivalence to the 1-Weisfeiler-

Lehman test, often results in indistinguishable representation for non-isomorphic

graphs. A suite of contributions has surfaced to boost GNN expressiveness, of

which [54, 100, 108, 179] stand out. An elegant, yet effective paradigm involves

symmetry-breaking through stochasticity injection [1, 120, 129]. Although enhanc-

ing expressiveness, such random perturbations can occasionally undermine general-

izability. Diverging from these approaches, our methodology exploits probabilistic

orthogonality within random vectors, culminating in a robust structural feature es-

timator that introduces minimal estimator variance.

Link-Level Link Prediction. While node-level models like GAE offer enviable

efficiency, they occasionally fall short in performance when compared with rudimen-

tary heuristics [22]. To improve the capability of modeling link-level structures, the

seminal SEAL model [178] labels nodes based on proximity to target links and then

performs message-passing for each target link. However, it is hindered by computa-

tional expense, limiting its scalability. Efforts to build scalable link-level alternatives

have culminated in innovative methods such as Neo-GNN [176], which distills struc-

61

tural features from adjacency matrices for link prediction. Elsewhere, ELPH [22] har-

nesses hashing mechanisms for structural feature representation, while NCNC [155]

adeptly aggregates common neighbors’ node representation. Notably, DotHash [114],

which profoundly influenced our approach, employs quasi-orthogonal random vectors

for set similarity computations, applying these in link prediction tasks.

Distinctively, our proposition builds upon, yet diversifies from, the frameworks of

ELPH and DotHash. While resonating with ELPH’s architectural spirit, we utilize

a streamlined, efficacious hashing technique over MinHash for set similarity compu-

tations. Moreover, we resolve ELPH’s limitations through strategic implementations

like shortcut removal and norm rescaling. When paralleled with DotHash, our ap-

proach magnifies its potential, integrating it with GNNs for link predictions and

extrapolating its applicability to multi-hop scenarios. It also judiciously optimizes

variance induced by the structural feature estimator in sync with graph data. We

further explore the potential of achieving higher expressiveness with linear computa-

tional complexity by estimating the substructure counting [27].

4.4 Can Message Passing count Common Neighbor?

In this section, we delve deep into the potential of MPNNs for heuristic link

predictor estimation. We commence with an empirical evaluation to recognize the

proficiency of MPNNs in approximating link predictors. Following this, we unravel

the intrinsic characteristics of 1-layer MPNNs, shedding light on their propensity

to act as biased estimators for heuristic link predictors and proposing an unbiased

alternative. Ultimately, we cast light on how successive rounds of message passing

can estimate the number of walks connecting a target node pair with other nodes in

the graph. All proofs are provided in Appendix C.6.

62

Figure 4.3: GNNs estimate CN, AA and RA via MSE regression, using the mean
value as a Baseline. Lower values are better.

4.4.1 Estimation via Mean Squared Error Regression

To explore the capacity of MPNNs in capturing the overlap information inher-

ent in heuristic link predictors, such as CN, AA and RA, we conduct an empirical

investigation, adopting the GAE framework [81] with GCN [82] and SAGE [59] as

representative encoders. SEAL [178], known for its proven proficiency in capturing

heuristic link predictors, serves as a benchmark in our comparison. Additionally, we

select a non-informative baseline estimation, simply using the mean of the heuris-

tic link predictors on the training sets. The datasets comprise eight non-attributed

graphs (more details in Section 4.6). Given that GNN encoders require node features

for initial representation, we have to generate such features for our non-attributed

graphs. We achieved this by sampling from a high-dimensional Gaussian distribu-

tion with a mean of 0 and standard deviation of 1. Although one-hot encoding is

frequently employed for feature initialization on non-attributed graphs, we choose to

forgo this approach due to the associated time and space complexity.

To evaluate the ability of GNNs to estimate CN information, we adopt a training

procedure analogous to a conventional link prediction task. However, we reframe the

task as a regression problem aimed at predicting heuristic link predictors, rather than

63

a binary classification problem predicting link existence. This shift requires changing

the objective function from cross-entropy to Mean Squared Error (MSE). Such an

approach allows us to directly observe GNNs’ capacity to approximate heuristic link

predictors.

Our experimental findings, depicted in Figure 4.3, reveal that GCN and SAGE

both display an ability to estimate heuristic link predictors, albeit to varying de-

grees, in contrast to the non-informative baseline estimation. More specifically, GCN

demonstrates a pronounced aptitude for estimating RA and nearly matches the per-

formance of SEAL on datasets such as C.ele, Yeast, and PB. Nonetheless, both

GCN and SAGE substantially lag behind SEAL in approximating CN and AA. In

the subsequent section, we delve deeper into the elements within the GNN models

that facilitate this approximation of link predictors while also identifying factors that

impede their accuracy.

4.4.2 Estimation capabilities of GNNs for link predictors

GNNs exhibit the capability of estimating link predictors. In this section, we aim

to uncover the mechanisms behind these estimations, hoping to offer insights that

could guide the development of more precise and efficient methods for link prediction.

We commence with the following theorem:

Theorem 4. Let G = (V,E) be a non-attributed graph and consider a 1-layer

GCN/SAGE. Define the input vectors X ∈ RN×F initialized randomly from a zero-

mean distribution with standard deviation σnode. Additionally, let the weight matrix

W ∈ RF ′×F be initialized from a zero-mean distribution with standard deviation

σweight. After performing message passing, for any pair of nodes {(u, v)|(u, v) ∈

64

V × V \ E}, the expected value of their inner product is given by:

GCN: E(hu · hv) =
C√
d̂ud̂v

∑
k∈Nu

⋂
Nv

1

d̂k
;

SAGE: E(hu · hv) =
C√
dudv

∑
k∈Nu

⋂
Nv

1,

where d̂v = dv + 1 and C = σ2
nodeσ

2
weightFF

′.

The theorem suggests that given proper initialization of input vectors and weight

matrices, MPNN-based models, such as GCN and SAGE, can adeptly approximate

heuristic link predictors. This makes them apt for encapsulating joint structural

features of any node pair. Interestingly, SAGE predominantly functions as a CN

estimator, whereas the aggregation function in GCN grants it the ability to weigh

the count of common neighbors in a way similar to RA. This particular trait of GCN

is evidenced by its enhanced approximation of RA, as depicted in Figure 4.3.

Quasi-orthogonal vectors. The GNN’s capability to approximate heuristic link

predictors is primarily grounded in the properties of their input vectors in a linear

space. When vectors are sampled from a high-dimensional linear space, they tend

to be quasi-orthogonal, implying that their inner product is nearly 0 w.h.p. With

message-passing, these QO vectors propagate through the graph, yielding in a linear

combination of QO vectors at each node. The inner product between pairs of QO vec-

tor sets essentially echoes the norms of shared vectors while nullifying the rest. Such

a trait enables GNNs to estimate CN through message-passing. A key advantage

of QO vectors, especially when compared with orthonormal basis, is their computa-

tional efficiency. For a modest linear increment in space dimensions, the number of

QO vectors can grow exponentially, given an acceptable margin of error [76]. An in-

triguing observation is that the orthogonality of QO vectors remains intact even after

GNNs undergo linear transformations post message-passing, attributed to the ran-

65

domized weight matrix initialization. This mirrors the dimension reduction observed

in random projection [73].

Limitations. While GNNs manifest a marked ability in estimating heuristic link

predictors, they are not unbiased estimators and can be influenced by factors such

as node pair degrees, thereby compromising their accuracy. Another challenge when

employing such MPNNs is their limited generalization to unseen nodes. The neural

networks, exposed to randomly generated vectors, may struggle to transform newly

added nodes in the graph with novel random vectors. This practice also violates

the permutation-invariance principle of GNNs when utilizing random vectors as node

representation. It could strengthen generalizability if we regard these randomly gener-

ated vectors as signatures of the nodes, instead of their node features, and circumvent

the use of MLPs for them.

Unbiased estimator. Addressing the biased element in Theorem 4, we propose

the subsequent instantiation for the message-passing functions:

h(l+1)
v =

∑
u∈Nv

h(l)
u . (4.3)

Such an implementation aligns with the SAGE model that employs sum aggre-

gation devoid of self-node propagation. This methodology also finds mention in

DotHash [114], serving as a cornerstone for our research. With this kind of message-

passing design, the inner product of any node pair signatures can estimate CN im-

partially:

Theorem 5. Let G = (V,E) be a graph, and let the vector dimension be given by

F ∈ N+. Define the input vectors X = (Xi,j), which are initialized from a random

variable x having a mean of 0 and a standard deviation of 1√
F
. Using the 1-layer

66

message-passing in Equation 4.3, for any pair of nodes {(u, v)|(u, v) ∈ V × V }, the

expected value and variance of their inner product are:

E(hu · hv) = CN(u, v),

Var(hu · hv) =
1

F

(
dudv + CN(u, v)2 − 2CN(u, v)

)
+ FVar

(
x2
)
CN(u, v).

Though this estimator provides an unbiased estimate for CN, its accuracy can be

affected by its variance. Specifically, DotHash recommends selecting a distribution for

input vector sampling from vertices of a hypercube with unit length, which curtails

variance given that Var(x2) = 0. However, the variance influenced by the graph

structure isn’t adequately addressed, and this issue will be delved into in Section 4.5.

Orthogonal node attributes. Both Theorem 4 and Theorem 5 underscore the

significance of quasi orthogonality in input vectors, enabling message-passing to ef-

ficiently count CN. Intriguingly, in most attributed graphs, node attributes, often

represented as bag-of-words [122], exhibit inherent orthogonality. This brings forth a

critical question: In the context of link prediction, do GNNs primarily approximate

neighborhood overlap, sidelining the intrinsic value of node attributes? We earmark

this pivotal question for in-depth empirical exploration in Appendix C.4, where we

find that random vectors as input to GNNs can catch up with or even outperform

node attributes.

4.4.3 Multi-layer message passing

Theorem 5 elucidates the estimation of CN based on a single iteration of message

passing. This section explores the implications of multiple message-passing iterations

and the properties inherent to the iteratively updated node signatures. We begin

with a theorem delineating the expected value of the inner product for two nodes’

67

signatures derived from any iteration of message passing:

Theorem 6. Under the conditions defined in Theorem 5, let h
(l)
u denote the vector

for node u after the l-th message-passing iteration. We have:

E
(
h(p)

u · h(q)
v

)
=
∑
k∈V

|walks(p)(k, u)||walks(q)(k, v)|,

where |walks(l)(u, v)| counts the number of length-l walks between nodes u and v.

This theorem posits that the message-passing procedure computes the number of

walks between the target node pair and all other nodes. In essence, each message-

passing trajectory mirrors the path of the corresponding walk. As such, h
(l)
u ag-

gregates the initial QO vectors originating from nodes reachable by length-l walks

from node u. In instances where multiple length-l walks connect node k to u, the

associated QO vector Xk,: is incorporated into the sum |walks(l)(k, u)| times.

One might surmise a paradox, given that message-passing calculates the num-

ber of walks, not nodes. However, in a simple graph devoid of self-loops, where at

most one edge can connect any two nodes, it is guaranteed that |walks(1)(u, v)| = 1

iff SPD(u, v) = 1. Consequently, the quantity of length-1 walks to a target node

pair equates to CN, a first-order heuristic. It’s essential to recognize, however, that

|walks(l)(u, v)| ≥ 1 only implies SPD(u, v) ≤ l. This understanding becomes vital

when employing message-passing for estimating the local structure of a target node

pair in Section 4.5.

4.5 Method

In this section, we introduce our novel link prediction model, denoted as MPLP.

Distinctively designed, MPLP leverages the pure essence of the message-passing

mechanism to adeptly learn joint structural features of the target node pairs.

68

Figure 4.4: Representation of the target link (u, v) within our model (MPLP), with
nodes color-coded based on their distance from the target link.

Node representation. While MPLP is specifically designed for its exceptional

structural capture, it also embraces the inherent attribute associations of graphs

that speak volumes about individual node characteristics. To fuse the attributes (if

they exist in the graph) and structures, MPLP begins with a GNN, utilized to encode

node u’s representation: GNN(u) ∈ RFx . This node representation will be integrated

into the structural features when constructing the QO vectors. Importantly, this

encoding remains flexible, permitting the choice of any node-level GNN.

4.5.1 QO vectors construction

Probabilistic hypercube sampling. Though deterministic avenues for QO vec-

tor construction are documented [74, 75], our preference leans toward probabilistic

techniques for their inherent simplicity. We inherit the sampling paradigm from

DotHash [114], where each node k is assigned with a node signature h
(0)
k , acquired

via random sampling from the vertices of an F -dimensional hypercube with unit vec-

69

tor norms. Consequently, the sampling space for h
(0)
k becomes {−1/

√
F , 1/

√
F}F .

Harnessing One-hot hubs for variance reduction. The stochastic nature of

our estimator brings along an inevitable accompaniment: variance. Theorem 5 elu-

cidates that a graph’s topology can augment estimator variance, irrespective of the

chosen QO vector distribution. At the heart of this issue is the imperfectness of

quasi-orthogonality. While a pair of vectors might approach orthogonality, the same

cannot be confidently said for the subspaces spanned by larger sets of QO vectors.

Capitalizing on the empirical observation that real-world graphs predominantly

obey the power-law distribution [9], we propose a strategy to control variance. Lever-

aging the prevalence of high-degree nodes—or hubs—we designate unique one-hot

vectors for the foremost hubs. Consider the graph’s top-b hubs; while other nodes

draw their QO vectors from a hypercube {−1/
√
F − b, 1/

√
F − b}F−b×{0}b, these

hubs are assigned one-hot vectors from {0}F−b×{0, 1}b, reserving a distinct subspace

of the linear space to safeguard orthogonality. Note that when new nodes are added,

their QO vectors are sampled the same way as the non-hub nodes, which can ensure

a tractable computation complexity.

Norm rescaling to facilitate weighted counts. Theorem 4 alludes to an intrigu-

ing proposition: the estimator’s potential to encapsulate not just CN, but also RA.

Essentially, RA and AA are nuanced heuristics translating to weighted enumerations

of shared neighbors, based on their node degrees. In Theorem 5, such counts are an-

chored by vector norms during dot products. MPLP enhances this count methodology

by rescaling node vector norms, drawing inspiration from previous works [114, 176].

This rescaling is determined by the node’s representation, GNN(u), and its degree

70

du. The rescaled vector is formally expressed as:

h̃
(0)
k = f(GNN(k)||[dk]) · h(0)

k , (4.4)

where f : RFx+1 → R is an MLP mapping the node representation and degree to a

scalar, enabling the flexible weighted count paradigm.

4.5.2 Structural feature estimations

Node label estimation. The estimator in Theorem 5 can effectively quantify CN.

Nonetheless, solely relying on CN fails to encompass diverse topological structures

embedded within the local neighborhood. To offer a richer representation, we turn to

Distance Encoding (DE) [90]. DE acts as an adept labeling tool [182], demarcating

nodes based on their shortest-path distances relative to a target node pair. For a given

pair (u, v), a node k belongs to a node set DE(p, q) iff SPD(u, k) = p and SPD(v, k) =

q. Unlike its usage as node labels, we opt to enumerate these labels, producing a link

feature defined by #(p, q) = |DE(p, q)|. Our model adopts a philosophy akin to

ELPH [22], albeit with a distinct node-estimation mechanism.

Returning to Theorem 6, we recall that message-passing as in Equation 4.3 es-

sentially corresponds to walks. Our ambition to enumerate nodes necessitates a

single-layer message-passing alteration, reformulating Equation 4.3 to:

η(s)
v =

∑
k∈N s

v

h̃
(0)
k . (4.5)

Here, N s
v pinpoints v’s shortest-path neighborhoods distanced by the shortest-path s.

This method sidesteps the duplication dilemma highlighted in Theorem 6, ensuring

that η
(s)
v aggregates at most one QO vector per node. Similar strategies are explored

in [2, 47].

For a tractable computation, we limit the largest shortest-path distance as r ≥

71

max(p, q). Consequently, to capture the varied proximities of nodes to the target

pair (u, v), we can deduce:

#(p, q) =



E
(
η(p)
u · η(q)

v

)
, r ≥ p, q ≥ 1

|N q
v | −

∑
1≤s≤r

#(s, q), p = 0

|N p
u | −

∑
1≤s≤r

#(p, s), q = 0

(4.6)

Concatenating the resulting estimates yields the expressive structural features of MPLP.

Shortcut removal. The intricately designed structural features improve the ex-

pressiveness of MPLP. However, this augmented expressiveness introduces suscep-

tibility to distribution shifts during link prediction tasks [37]. Consider a scenario

wherein the neighborhood of a target node pair contains a node k. Node k resides a

single hop away from one of the target nodes but requires multiple steps to connect

with the other. When such a target node pair embodies a positive instance in the

training data (indicative of an existing link), node k can exploit both the closer target

node and the link between the target nodes as a shortcut to the farther one. This

dynamic ensures that for training-set positive instances, the maximum shortest-path

distance from any neighboring node to the target pair is constrained to the smaller

distance increased by one. This can engender a discrepancy in distributions between

training and testing phases, potentially diminishing the model’s generalization capa-

bility.

To circumvent this pitfall, we adopt an approach similar to preceding works [72,

155, 171, 178]. Specifically, we exclude target links from the original graph during

each training batch, as shown by the dash line in Figure 4.4. This maneuver ensures

these links are not utilized as shortcuts, thereby preserving the fidelity of link feature

construction.

72

Feature integration for link prediction. Having procured the structural fea-

tures, we proceed to formulate the encompassing link representation for a target

node pair (u, v) as:

h(u,v) = (GNN(u)⊙GNN(v))||[#(1, 1), . . . ,#(r, r)],

which can be fed into a classifier for a link prediction between nodes (u, v).

4.5.3 More scalable estimation

MPLP estimates the cardinality of the distinct node sets with different distances

relative to target node pairs in Equation 4.6. However, this operation requires a

preprocessing step to construct the shortest-path neighborhoods N s
v for s ≤ r, which

can cause computational overhead on large-scale graph benchmarks. To overcome

this issue, we simplify the structural feature estimations as:

#(p, q) = E
(
h̃(p)

u · h̃(q)
v

)
, (4.7)

where h̃
(l+1)
v =

∑
u∈Nv

h̃
(l)
u follows the message-passing defined in Equation 4.3. Such

an estimation only requires the one-hop neighborhood Nv, which is provided in a

format of adjacency matrices/lists by most graph datasets. Therefore, we can sub-

stitute the structural features of MPLP with the estimation in Equation 4.7. We

denote such a model with walk-level features as MPLP+.

Triangular substructure estimation. Our method, primarily designed to encap-

sulate the local structure of a target node pair, unexpectedly exhibits the capacity

for estimating the count of triangles linked to individual nodes. This capability, tra-

ditionally considered beyond the reach of GNNs, marks a significant advancement in

the field [27]. Although triangle counting is less directly relevant in the context of

73

link prediction, the implications of this capability are noteworthy. To maintain fo-

cus, we relegate the detailed discussion on pure message-passing for effective triangle

counting to Appendix C.2.

4.6 Experiments

TABLE 4.1

LINK PREDICTION RESULTS ON NON-ATTRIBUTED

BENCHMARKS.

USAir NS PB Yeast C.ele Power Router E.coli

Metric Hits@50 Hits@50 Hits@50 Hits@50 Hits@50 Hits@50 Hits@50 Hits@50

CN 80.52±4.07 74.00±1.98 37.22±3.52 72.60±3.85 47.67±10.87 11.57±0.55 9.38±1.05 51.74±2.70

AA 85.51±2.25 74.00±1.98 39.48±3.53 73.62±1.01 58.34±2.88 11.57±0.55 9.38±1.05 68.13±1.61

RA 85.95±1.83 74.00±1.98 38.94±3.54 73.62±1.01 61.47±4.59 11.57±0.55 9.38±1.05 74.45±0.55

GCN 73.29±4.70 78.32±2.57 37.32±4.69 73.15±2.41 40.68±5.45 15.40±2.90 24.42±4.59 61.02±11.91

SAGE 83.81±3.09 56.62±9.41 47.26±2.53 71.06±5.12 58.97±4.77 6.89±0.95 42.25±4.32 75.60±2.40

SEAL 90.47±3.00 86.59±3.03 44.47±2.86 83.92±1.17 64.80±4.23 31.46±3.25 61.00±10.10 83.42±1.01

Neo-GNN 86.07±1.96 83.54±3.92 44.04±1.89 83.14±0.73 63.22±4.32 21.98±4.62 42.81±4.13 73.76±1.94

ELPH 87.60±1.49 88.49±2.14 46.91±2.21 82.74±1.19 64.45±3.91 26.61±1.73 61.07±3.06 75.25±1.44

NCNC 86.16±1.77 83.18±3.17 46.85±3.18 82.00±0.97 60.49±5.09 23.28±1.55 52.45±8.77 83.94±1.57

MPLP 92.12±2.21 90.02±2.04 52.55±2.90 85.36±0.72 74.28±2.09 32.66±3.58 64.68±3.14 86.11±0.83

MPLP+ 91.24±2.11 88.91±2.04 51.81±2.39 84.95±0.66 72.73±2.99 31.86±2.59 60.94±2.51 87.07±0.89

The format is average score ± standard deviation. The top three models are colored by First, Second, Third.

74

TABLE 4.2

LINK PREDICTION RESULTS ON ATTRIBUTED BENCHMARKS.

CS Physics Computers Photo Collab PPA Citation2

Metric Hits@50 Hits@50 Hits@50 Hits@50 Hits@50 Hits@100 MRR

CN 51.04±15.56 61.46±6.12 21.95±2.00 29.33±2.74 61.37±0.00 27.65±0.00 51.47±0.00

AA 68.26±1.28 70.98±1.96 26.96±2.08 37.35±2.65 64.35±0.00 32.45±0.00 51.89±0.00

RA 68.25±1.29 72.29±1.69 28.05±1.59 40.77±3.41 64.00±0.00 49.33±0.00 51.98±0.00

GCN 66.00±2.90 73.71±2.28 22.95±10.58 28.14±7.81 35.53±2.39 18.67±0.00 84.74±0.21

SAGE 57.79±18.23 74.10±2.51 33.79±3.11 46.01±1.83 36.82±7.41 16.55±0.00 82.60±0.36

SEAL 68.50±0.76 74.27±2.58 30.43±2.07 46.08±3.27 64.74±0.43 48.80±3.16 87.67±0.32

Neo-GNN 71.13±1.69 72.28±2.33 22.76±3.07 44.83±3.23 57.52±0.37 49.13±0.60 87.26±0.84

ELPH 72.26±2.58 65.80±2.26 29.01±2.66 43.51±2.37 65.94±0.58 OOM OOM

NCNC 74.65±1.23 75.96±1.73 36.48±4.16 47.98±2.36 66.61±0.71 61.42±0.73 89.12±0.40

MPLP 76.40±1.44 76.46±1.95 43.47±3.61 58.08±3.68 67.05±0.51 OOM OOM

MPLP+ 75.55±1.46 76.36±1.40 42.21±3.56 57.76±2.75 66.99±0.40 65.24±1.50 90.72±0.12

The format is average score ± standard deviation. The top three models are colored by First, Second, Third.

4.6.1 Datasets, baselines and experimental setup

We conduct evaluations across a diverse spectrum of 15 graph benchmark datasets,

which include 8 non-attributed and 7 attributed graphs. It also includes three

datasets from OGB [62] with predefined train/test splits. In the absence of pre-

defined splits, links are partitioned into train, validation, and test sets using a 70-10-

20 percent split. Our comparison spans three categories of link prediction models:

(1) heuristic-based methods encompassing CN, AA, and RA; (2) node-level models

like GCN and SAGE; and (3) link-level models, including SEAL, Neo-GNN [176],

ELPH [22], and NCNC [155]. Each experiment is conducted 10 times, with the aver-

age score and standard deviations reported. The evaluation metrics are aligned with

the standard metrics for OGB datasets, and we utilize Hits@50 for the remaining

75

Figure 4.5: Evaluation of model size and inference time on Collab. The inference
time encompasses the entire cycle within a single epoch.

datasets. We limit the number of hops r = 2, which results in a good balance of

performance and efficiency. A comprehensive description of the experimental setup

is available in Appendix C.3.

4.6.2 Results

Performance metrics are shown in Tables 4.1 and 4.2. Our methods, MPLP and

MPLP+, demonstrate superior performance, surpassing baseline models across all

evaluated benchmarks by a significant margin. Notably, MPLP tends to outper-

form MPLP+ in various benchmarks, suggesting that node-level structural features

(Equation 4.6) might be more valuable for link prediction tasks than the walk-level

features (Equation 4.7). In large-scale graph benchmarks such as PPA and Cita-

tion2, MPLP+ sets new benchmarks, establishing state-of-the-art results. For other

76

datasets, our methods show a substantial performance uplift, with improvements in

Hits@50 ranging from 2% to 10% compared to the closest competitors.

4.6.3 Model size and inference time

A separate assessment focuses on the trade-off between model size and inference

time using the Collab dataset, with findings presented in Figure 4.5. Observing

the prominent role of graph structure in link prediction performance on Collab, we

introduce a streamlined version of our model, termed MPLP(no feat). This variant

solely capitalizes on structural features, resulting in a compact model with merely

260 parameters. Nevertheless, its efficacy rivals that of models which are orders

of magnitude larger. Furthermore, MPLP’s inference time for a single epoch ranks

among the quickest in state-of-the-art approaches, underscoring its efficiency both in

terms of time and memory footprint. More details can be found in Appendix C.3.3.

4.6.4 Estimation accuracy

We investigate the precision of MPLP in estimating #(p, q), which denotes the

count of node labels, using the Collab dataset. The outcomes of this examination

are illustrated in Figure C.4. Although ELPH possesses the capability to approxi-

mate these counts utilizing techniques like MinHash and Hyperloglog, our method

exhibits superior accuracy. Moreover, ELPH runs out of memory when the dimension

is larger than 3000. Remarkably, deploying a one-hot encoding strategy for the hubs

further bolsters the accuracy of MPLP, concurrently diminishing the variance intro-

duced by inherent graph structures. An exhaustive analysis, including time efficiency

considerations, is provided in Appendix C.5.1.

77

4.6.5 Extended ablation studies

Further ablation studies have been carried out to understand the individual con-

tributions within MPLP. These include: (1) an exploration of the distinct compo-

nents of MPLP in Appendix C.5.2; (2) an analysis of the performance contributions

from different structural estimations in Appendix C.5.3; and (3) an examination of

parameter sensitivity in Appendix C.5.4.

4.7 Conclusion

We study the potential of message-passing GNNs to encapsulate link structural

features. Based on this, we introduce a novel link prediction paradigm that consis-

tently outperforms state-of-the-art baselines across various graph benchmarks. The

inherent capability to adeptly capture structures enhances the expressivity of GNNs,

all while maintaining their computational efficiency. Our findings hint at a promising

avenue for elevating the expressiveness of GNNs through probabilistic approaches.

78

CHAPTER 5

EFFICIENT GNNS WITHOUT GRADIENT DESCENT OPTIMIZATION

5.1 Overview

This chapter addresses the efficiency of GNNs by introducing a novel training-

free paradigm for semi-supervised node classification tasks on text-attributed graphs

(TAG). Convention GNNs typically rely on iterative training procedures such as gra-

dient descent, demanding substantial computational resources. This chapter investi-

gates an alternative approach rather than iterative optimization. It directly approxi-

mates optimal GNN parameters from node attributes and graph structure. Observing

that node features belonging to the same class cluster into similar linear subspaces,

we propose a closed-form solution that directly derives optimal model parameters

from these observed subspace properties. This eliminates the computationally ex-

pensive training process, substantially improving the practicality and scalability of

GNN models. The empirical results show that our training-free approach achieves

competitive predictive performance while significantly reducing computational over-

head.

This chapter primarily builds upon a previously published work [40] in collabo-

ration with Zhichun Guo and Nitesh V. Chawla.

5.2 Introduction

Graph structured data is widely used across many fields due to its ability to show

relationships between different entities [165]. In many cases, the nodes in these graphs

79

are associated with text attributes, leading to what’s known as text-attributed graphs

(TAG) [28]. TAG has versatile applications, including social media [91], citation

networks [169], academic collaborations [62], or recommendation system [131].

We aim to delve into effective approaches for handling TAG, focusing specifically

on semi-supervised node classification tasks [169]. The objective here is to predict

the labels of unlabeled nodes within a graph, utilizing a limited set of labeled nodes

as a reference [80]. To effectively capture both the node attributes and the topo-

logical structure within the graph, Graph Neural Networks (GNNs) [59, 82, 149],

especially those of the message-passing type [57], have demonstrated significant suc-

cess in effectively managing graph-structured data. Typically, the GNN process be-

gins by transforming the textual data of each node into a vector using text em-

bedding techniques like Bag-Of-Words (BOW), TF-IDF, and word2vec [104]1. The

straightforward application of these shallow text embedding methods has led to their

widespread adoption as the go-to text encoding technique in numerous graph bench-

mark datasets [62, 131, 169] (see Table E.1).

When it comes to node classification with the textual data encoded, a GNN is

trained on the graph to fit the data accurately. The training phase, often seen as

an optimization process, commonly employs iterative tools like gradient descent to

update the model’s weight to minimize a predefined loss function over the train-

ing samples. Although gradient descent (and its variants [139]) has become almost

synonymous with model fitting, it raises a question whether there are alternative

methods to fit the GNNs.

One such alternative is proposed by UGT [66], drawing inspiration from the lot-

tery ticket hypothesis [52, 190]. UGT suggests fitting GNNs without updating model

weights by identifying a mask to sparsify untrained neural networks. Although these

1Recently, there has been growing interest in utilizing Large Language Models to encode textual
data. However, employing a more complex text encoder alone doesn’t offer substantial benefits over
simpler embeddings like BOW and TF-IDF [28, 122]

80

sparse subnetworks can perform comparably to trained dense networks, finding an ap-

propriate mask involves an iterative discrete optimization process, which can be even

more computationally demanding than traditional gradient descent optimization.

In this paper, we explore how GNNs can be fitted without employing tra-

ditional iterative processes like gradient descent to tackle semi-supervised

node classification tasks on TAG. Given the absence of a closed-form solution for

multiclass classification problems, we suggest approximating optimal parameters by

harnessing both the node attributes and graph structures. We observe that on TAG,

text encodings from the same class tend to cluster in the same linear subspace, while

being orthogonal to those from different classes. Moreover, we investigate the train-

ing dynamics of GCN [82] and SGC [161], two representative GNNs. Our findings

suggest that traditional GNN training on TAG can be seen as a process to locate the

weight vectors close to the text encodings from corresponding classes in the linear

space. Inspired by these insights, we introduce TrainlessGNN, a method that fits a

linear GNN model by constructing a weight matrix reflecting the subspace of a par-

ticular class’s node attributes. The formulation of the weight matrix in our approach

can be interpreted as a closed-form solution for a linear regression problem, solved by

minimum-norm interpolation in an over-parameterized regime [151], offering a novel

pathway for addressing semi-supervised node classification on TAG.

To summarize, our contributions are as follows:

• We investigate the training dynamics of common GNNs like GCN and SGC
on TAG. We discover that the weight matrix is fundamentally pushed towards
approximating the subspaces of the node attributes associated with respective
classes.

• We introduce TrainlessGNN, an innovative and efficient method for semi-supervised
node classification. To our knowledge, TrainlessGNN is the first to achieve
significant predictive performance without the need for an iterative training
process in fitting GNN models.

• Through empirical evaluation on various TAG benchmarks, we demonstrate
that our method, devoid of a typical training process, can either match or

81

surpass the performance of conventionally trained models.

5.3 Preliminaries and Related Work

Notations. We examine a graph G = (V ,A,X). The graph is comprised of a

node set V with a cardinality of n, indexed as {v1, . . . , vn}. The adjacency matrix

A ∈ Rn×n characterizes the structural relationships between nodes. We further define

the degree matrix D as a diagonal matrix, with D = diag(d1, . . . , dn). Every node

vi is associated with a d-dimensional feature vector xi ∈ Rd. When combined, these

vectors form the feature matrix as X = [x1, . . . ,xn]
⊤ ∈ Rn×d. The label of each node

yi belongs to one among the C classes, enumerated as {1, 2, . . . , C}. We denote the

one-hot encoding matrix of the labels as B.

Semi-supervised node classification. In the context of our work, we tackle a

semi-supervised node classification task. The entire node set V is divisibly partitioned

into two discrete subsets: U , representing the unlabeled nodes, and L, encompassing

the labeled nodes. Similarly, the original feature matrix X is divided into XL and

XU , corresponding to the node sets they belong to. Our primary goal is to leverage

the labeled subset L to predict class labels for the nodes in U with unknown labels.

Beyond traditional classification tasks, the semi-supervised node classification task is

confronted with a heightened challenge that there exists a predominant presence of

unknown labels within the testing set compared to the limited known labels within

the training set. This configuration echoes the settings explored in prior studies

[62, 131, 169].

Graph Neural Networks. Graph neural networks (GNNs) are a family of algo-

rithms that extract structural information from graphs that encode graph-structured

data into node representations or graph representations. They initialize each node fea-

82

ture representation with its attributes H(0) = X and then gradually update it by ag-

gregating representations from its neighbors. Formally, given a graph G = (V ,A,X),

the l-th layer GNN is defined as:

H(l) := UPD(H(l−1),AGG(H(l−1),A))), (5.1)

where AGG(·) and UPD(·) denote the neighborhood aggregation function and the

updating function respectively [57]. As a result, the final layer output of a GNN,

represented as Z = H(l) ∈ Rn×C , serves as the predicted logits for different classes.

To derive a prediction, one can select the class label associated with the highest logit

for each node:

ŷi = argmax
c

Zi,c. (5.2)

Decoupled GNNs. Prominent GNNs such as GCN typically incorporate learnable

MLPs within the UPD(·) function across each layer. Nonetheless, recent studies [188]

suggest that decoupling message passing from feature transformation can deliver

competitive performance when benchmarked against traditional GNNs. These so-

called Decoupled GNNs (DeGNNs) are often characterized by their computational

efficiency and are better to scale with larger graphs. Broadly, DeGNNs fall into two

categories, distinguished by the sequence in which they conduct message passing and

feature transformation.

For example, the SGC model [161] first undertakes multiple rounds of message

passing before culminating with a trainable linear layer for prediction. It performs

the message-passing step similar to GCN but without layer-wise linear transformation

as:

H(l) =
(
Ã
)L

X,Z = H(l)W, (5.3)

83

where Ã = D̂−1/2ÂD̂−1/2 and Â = A + I is the adjacency matrix with added self-

loops. W ∈ Rd×C is the learnable weight matrix.

Conversely, the C&S approach [64] initiates training with an MLP exclusively on

node attributes, devoid of the graph structure. It then propagates the resulting logits

through the graph, refining prediction based on the graph structure as:

Ẑ = MLP(X),Z = C&S(Ẑ,A), (5.4)

where Ẑ is the logits for the node classification tasks. For those keen on the specific

formulation of C&S(Z0,A), we have detailed it in the appendix.

Objective and Training Process. To train GNNs, one must optimize their

weight matrices to fit on the dataset. Surrogate measures such as cross entropy,

depicted in Equation 5.5, are employed to iteratively adjust the model weights to

reduce discrepancies between its predictions and the true labels on the labeled subset

L of the graph.

Loss = − 1

|L|
∑
vi∈L

log

(
eZi,yi∑C
j=1 e

Zi,j

)
. (5.5)

5.4 Unpacking What GNNs Learn on Text-Attributed Graphs

In this section, our goal is to gain insights into the inner workings of GNNs, espe-

cially during training for node classification on graphs that have text attributes. We

will first discuss common text encoding methods used to convert textual information

into a format suitable for machine learning. Then, we will examine the behavior of

weight matrices in two GNN models: SGC and GCN. Insights from this exploration

will pave the way for our proposed method, which does not require to optimize the

loss function to fit the data.

84

5.4.1 Quasi-orthogonal node attributes

On a TAG, nodes contain text descriptions that highlight their unique charac-

teristics. But to make this text data useful for machine learning algorithms, we

convert it into vectors. Node attributes in such a graph are commonly encoded

using methods like Bag-of-Words (BOW) and TF-IDF [62, 131, 169]. The essence

of these methods is to construct a vocabulary from word tokens and then encode

documents based on word token occurrences. For expansive vocabularies, such en-

coding tends to be sparse. This sparsity implies that two documents with differing

lexicons are likely to yield encodings that are orthogonal. We term this attribute

behavior as quasi-orthogonality (QO). We sought to empirically ascertain the QO

Figure 5.1: Heatmap of the inner product of node attributes on TAG.

of node attributes across various TAG. Our analysis spanned five distinct datasets:

Cora (BOW encoded), Pubmed (TF-IDF encoded) [169], Computers (BOW encoded

but with relatively smaller vocabulary) [131], OGBN-Products (BOW encoded fol-

lowed by principle component analysis), and OGBN-Arxiv (encoded via word2vec

averaging) [62].

The heatmap in Figure 5.1 plots the inner products of node attributes. Both the

x and y axes denote node indices, whereas the color gradient signifies the magnitude

85

of their inner product. We further order nodes by their true labels, y, ensuring nodes

from identical classes cluster adjacently.

In the datasets of Cora, Pubmed, and OGN-Product, the heatmap clearly exhibits

QO. The inner product between attributes of any node pair is almost negligible.

Moreover, brighter blocks along the diagonal indicate that nodes within the same

classes have a tendency to exhibit higher inner products compared to other nodes.

In contrast, the OGBN-Arxiv dataset doesn’t demonstrate this QO trait. This de-

viation can be attributed to the use of average word embeddings for node attribute

generation, which can compromise the QO among nodes. Interestingly, despite being

encoded with BOW, the Computers dataset lacks prominent QO node attributes.

This might stem from its relatively smaller vocabulary size. In the experiment sec-

tion, we will illustrate that the QO property plays a critical role in determining the

efficacy of our proposed trainless methods compared to the trained approaches.

5.4.2 What SGC learns

In this section, we probe deeper into the learning dynamics of the SGC model

when trained via gradient descent. Notably, the SGC model comprises a sole trainable

weight matrix, W = (W:,1, . . . ,W:,C) ∈ Rd×C , as illustrated in Equation 5.3. Our

primary focus lies in understanding the interplay between the node attributes from

the training set and this weight matrix.

The logit Zi,c for node i concerning class c is computed by the inner product

Zi,c = xi ·W:,c. For a prediction to be accurate, we would anticipate that the inner

product with the weight vector corresponding to the true class surpasses those of other

classes. Given the QO observed in node attributes, this phenomenon might be even

more pronounced. We base our experiment on the Cora dataset, characterized by 7

label classes with 20 labeled nodes for each class [169]. We evaluate the inner product

of each column vector W:,c of the weight matrix (for 1 ≤ c ≤ 7) against the node

86

Figure 5.2: Heatmap depicting the evolution of inner products between node at-
tributes and the weight vectors across various training epochs on the Cora dataset.

attributes xi for nodes vi ∈ L. This results in a heatmap of 7 rows and 20× 7 = 140

columns, with nodes of identical labels grouped together. The progression of this

heatmap across various epochs during training is displayed in Figure 5.2.

The evolving heatmaps reveal a pattern: as training progresses, the weight ma-

trix inclines to heighten the inner product between a node vi’s attribute and its

corresponding class’s weight vector, W:,yi , while diminishing the product with other

classes. This amplifies the logit for the true class yi, suppressing logits for other

classes towards zero, subsequently reducing the loss in Equation 5.5. This observa-

tion serves as a foundation for our subsequent proposal, where we seek to derive the

weight matrix directly from the aggregation of node attributes.

5.4.3 What GCN learns

We previously observed the SGC’s propensity to optimize its weight matrix, en-

suring a heightened inner product between node attributes and the corresponding

class’s weight vector. This section delves into discerning whether GNNs, particularly

those with non-linearities and multiple layers, exhibit analogous learning dynamics.

We direct our focus to the popularly employed 2-layer GCN.

87

TABLE 5.1

COMPARISON OF ACCURACY.

Dataset Cora Citeeer Pubmed

SGC 81.00 71.90 78.90

2-layer GCN 81.50 71.40 78.50

second-layer-frozen GCN 80.40 70.50 77.80

Comparison of accuracy between SGC, 2-layer GCN, and 2-
layer GCN with the second layer frozen.

We first rewrite the Equation 5.1 for GCN as:

H(1) = σ(ÃXW(1)), H(2) = ÃH(1)W(2). (5.6)

Interestingly, the one-layer model, such as the SGC, achieves comparable perfor-

mance with the 2-layer GCN, as shown in Table 5.1. This leads us to question the

necessity of simultaneously training weight matrices for both layers. To explore this,

we train a 2-layer GCN, but keep the second layer’s weight matrix frozen, preserving

its initial state. The outcomes, shown in Table 5.1, reveal that performance remains

robust even with a static second layer. This suggests that in scenarios where node

attributes are sufficiently learned by a linear model like SGC, the MLP integrated

within GCNs might be redundant.

Pursuing this inquiry, with the second layer’s weight matrix still frozen, we under-

take an experiment analogous to our earlier one on SGC. Unlike our previous focus on

the inner product between node attributes X and weight vectors W:,c, we now assess

the correlation between the node representation H(1) from the GCN’s first layer and

the second layer’s weight matrix W(2). Specifically, we calculate the inner product

88

Figure 5.3: Heatmap depicting the evolution of inner products between node repre-
sentations from GCN’s first layer and the second layer’s weight vectors across various
training epochs on the Cora dataset.

between each training node’s representation H
(1)
i,: and the column vector W

(2)
:,c of the

weight matrix, then similarly represent this using a heatmap in Figure 5.3.

Interestingly, the first layer of the GCN appears to forge a relationship with

the second layer’s weight matrix that mirrors SGC’s dynamics. Notably, the inner

product between the node representation H
(1)
i,: and its associated class’s weight vector

W
(2)
:,yi is markedly higher than with the weight vectors of other classes. Throughout

the training phase, the GCN’s first layer essentially learns to project node attributes

from different classes into different subspaces. These subspaces are inherently defined

by the corresponding randomly initialized weight vector W
(2)
:,c of the second layer.

Given that randomly initialized vectors tend to be QO with high probability [38],

this fosters a high inner product between H
(1)
i,: and W

(2)
:,yi , but nearly nullifies the

product with other classes. This matches with our SGC observations.

5.5 Method

Previous analyses of SGC and GCN highlight that in cases where node attributes

from different classes are nearly orthogonal, gradient descent training tends to align

the weight vectors with corresponding class node attributes. It’s also observed that

for GCNs, freezing the last layer suggests that a sole linear layer can suffice for

89

TAG. Based on these insights, we introduce a simple yet efficient method, referred to

as TrainlessGNN. This method creates the linear weight matrix directly from node

attributes, eliminating the need for the usual gradient descent training in GNNs,

while still being suitable for inference. It’s applicable to linear classification models

and any De-GNN with a linear layer. Further details about the implementation can

be found in Appendix.

5.5.1 Building the Weight Matrix

Figure 5.4: This figure outlines the process for obtaining the weight matrix W in
TrainlessGNN. Initially, virtual label nodes are added for each class label. These
nodes are then connected to labeled nodes sharing the same class, depicted by green
lines. Additionally, virtual label nodes are connected to all other labeled nodes,
represented by red lines, with an assigned edge weight ω. A single round of message
passing updates the representation of the virtual label nodes, providing the desired
weight matrix W.

90

Virtual label nodes. To construct a weight matrix W ∈ Rd×C applicable to any

linear model, it’s essential to formulate the weight vectors W:,c ∈ Rd for 1 ≤ c ≤ C.

It begins by adding C virtual label nodes into the original graph as Vnew = V∪{v̂c|1 ≤

c ≤ C}. Every virtual label node v̂c symbolizes the corresponding class c, initialized

as a zero vector 0 ∈ Rd. Subsequent to this, each virtual label node is connected to

labeled nodes L possessing the matching labels. For example, the virtual label node

v̂c connects with all nodes from the training set labeled as c, {vi ∈ L|yi = c}. The

green lines in Figure 5.4 depict such connections.

Message passing. In this newly formed graph with virtual label nodes, the weight

matrix is constructed by executing a single round of message passing, which essen-

tially updates the representation of the virtual label nodes. The updated virtual label

nodes representation then defines W:

W⊤ = B⊤
LXL, (5.7)

where XL represents the node attributes from the labeled node sets L. The BL ∈

R|L|×C is a one-hot encoding matrix of the labels of L, acting as the incidence matrix

between virtual label nodes {v̂c|1 ≤ c ≤ C} and labeled nodes L. Through this

approach, the weight vectors are essentially constructed based on the node attributes

from the corresponding classes, with the aim to maximize the inner product between

the node attribute and the weight vector of the same class.

Connecting nodes with different labels. Adjusting the weight vectors based

on the node attributes from the same classes maximizes the inner product but fails

to minimize the inner product for nodes from different classes. To address this, we

extend the connections of virtual label nodes to other labeled nodes in the training

set (red lines in Figure 5.4). Contrarily to the connections within the same class

91

nodes, we assign an edge weight ω ∈ R as a hyperparameter to the newly formed

connections between virtual label nodes and differently labeled nodes. More formally,

the weight matrix is computed as:

W⊤ = (BL − ω

C
1)⊤XL. (5.8)

In this equation, each entry of the one-hot encoding matrix BL is subtracted by

ω
C
. By setting ω to a negative value, we can achieve a weight matrix that not only

maximizes the inner product of the weight vectors and node attributes from the same

class but also minimizes the inner product from different classes.

Inference. After obtaining the trainless weight matrix W, we proceed to an accu-

rate and efficient computation of the logits for the unlabeled node sets U . The logits

are calculated with various backbone models as detailed below:

• Trainless Linear: The logits Z are directly computed using the expression:

Z = XW, (5.9)

where X is the original feature matrix.

• Trainless SGC: The logits Z are inferred using the updated node representa-
tions H(l) with:

Z = H(l)W, (5.10)

• Trainless C&S: The logits Z are obtained using the C&S function applied to
the product of the original feature matrixX and the weight matrixW alongside
the adjacency matrix A:

Z = C&S(XW,A). (5.11)

5.5.2 A View from Linear Regressions

In this section, we explore the equivalence between our approach and a linear

classifier trained through gradient descent with a cross-entropy loss. We provide a

rationale for our method, viewing it through the lens of linear regression. The dis-

92

cussion begins by outlining the following assumptions related to the semi-supervised

node classification task:

Assumption 1. Consider a graph G = (V ,A,X), where X ∈ Rn×d. We propose

that:

1. The model is over-parametrized as the number of features d is adequately large,
i.e., d > |L|, where L is the training/labeled set.

2. The row vectors of the feature matrix are orthogonal as XLX
⊤
L = I.

These assumptions are modest and align with most real-world scenarios. The

first assumption pertinently applies to the majority of TAG created using shallow text

encoding methods like BOW or TF-IDF. Here, the number of features is contingent on

the size of the vocabulary. Additionally, in many semi-supervised node classification

task setups, the number of nodes in the training set is often comparatively low [62,

131, 169], further accentuating the model’s over-parameterization (refer to Table

E.1). The second assumption, grounded in previous observations, suggests that node

attributes are likely orthogonal to each other (see Figure 5.1).

In a simplified form, the classification problem in Equation 5.5 can be naively

converted into a linear regression problem with the least squared loss:

Ŵ = argmin
W

∥XLW −BL∥2.

Thanks to the over-parameterization, the training loss can be reduced to zero by

XLŴ = BL. Within this framework, our method is viewed as an effort to transpose

the XL term to the right-hand side. However, while our assumption holds that

XLX
⊤
L = I, it does not assert that X⊤

LXL = I. As a result, our solution cannot be

straightforwardly derived from this linear regression format.

To robustly affirm the effectiveness of our methodology, we employ the minimum-

norm interpolation method. Given the aforementioned assumptions, we can reformu-

93

late the weight matrix W derived by our method in Equation 5.7 as:

W = X⊤
LBL = X⊤

LIBL = X⊤
L(XLX

⊤
L)

−1BL. (5.12)

Essentially, the formulation above acts as an estimator for the linear regression task,

addressed by the minimum-norm interpolation method [151]:

Ŵ = argmin
W

∥W∥2 , s.t. XLW = BL. (5.13)

Moreover, the weight matrix W acquired through the minimum-norm interpolation

and in Equation 5.7 is equivalent to that achieved by other standard training methods,

including SVMs or gradient descent with diverse losses such as cross-entropy, with

sufficient over-parameterization [151]. This equivalency bolsters the legitimacy of our

methodology.

In summary, our technique essentially transforms a convex optimization problem

lacking closed-form solutions (Equation 5.5) into a linear regression (Equation 5.13)

with a closed-form solution (Equation 5.7). This transformation is grounded on the

distinctive sparse encodings of the TAG data.

5.6 Experiments

In this section, we evaluate TrainlessGNN on different benchmark datasets. We

start by evaluating our method on nine TAG datasets with different scales.

5.6.1 Experimental setups

Datasets. We select nine commonly used TAGs as our benchmarks. We use the

citation network Planetoid datasets [169], including Cora, Citeseer and Pubmed. We

also use the datasets introduced by [131], including two Coauthor datasets, CS and

94

TABLE 5.2

RESULTS OF SEMI-SUPERVISED NODE CLASSIFICATION ON

BENCHMARK DATASETS.

Cora Citeseer Pubmed CS Physics Computers Photo OGBN-Products OGBN-Arxiv

LP 68.00±0.00 45.30±0.00 63.00±0.00 73.60±3.90 86.60±2.00 70.80±8.10 72.60±11.10 74.34±0.00 68.32±0.00

GCN 80.94±0.45 69.24±0.74 76.62±0.30 90.01±1.08 92.10±1.42 82.46±1.66 88.10±1.48 75.64±0.21 71.74±0.29

SAGE 80.03±0.70 69.27±0.99 76.59±0.32 89.76±0.61 91.18±1.52 81.19±2.03 87.58±2.21 78.29±0.16 71.49±0.27

Linear 59.20±0.20 60.70±0.10 72.70±0.16 87.64±0.68 87.83±1.16 57.55±5.23 76.51±2.59 46.45±0.52 41.78±0.23

SGC 81.00±0.00 71.90±0.10 78.90±0.00 90.60±0.96 92.66±0.89 82.33±1.39 89.64±2.05 70.67±0.20 67.63±0.32

C&S 78.40±0.00 69.70±0.00 75.40±0.00 91.32±1.29 92.13±2.57 70.70±11.01 85.09±4.02 82.54±0.03 71.26±0.01

Trainless Linear 59.10±0.00 63.10±0.00 72.40±0.00 87.97±0.66 88.06±1.05 62.12±1.84 73.38±2.60 37.12±0.00 41.57±0.00

Trainless SGC 79.60±0.00 73.00±0.00 76.40±0.00 91.22±0.56 92.74±1.37 77.32±1.73 83.45±1.73 60.48±0.00 61.71±0.00

Trainless C&S 77.90±0.00 68.40±0.00 75.30±0.00 88.89±0.54 93.12±0.76 78.91±1.41 87.06±2.32 77.27±0.00 69.52±0.00

Use both training and validation labels

Trainless Linear 68.20±0.00 71.20±0.00 79.20±0.00 88.99±0.59 89.33±0.47 68.28±1.21 76.17±1.80 37.57±0.00 42.84±0.00

Trainless SGC 82.70±0.00 77.20±0.00 81.30±0.00 91.38±0.67 92.93±0.61 79.21±0.50 84.75±2.54 60.51±0.00 62.56±0.00

Trainless C&S 83.80±0.00 73.20±0.00 79.90±0.00 88.16±0.40 93.49±0.20 81.67±0.96 88.69±0.78 77.90±0.00 71.70±0.00

Results are evaluated by accuracy. The format is average score ± standard deviation. The top three models are colored by
First, Second, Third.

Physics, and the Amazon co-purchase networks, Computers and Photo. We further

include two OGB datasets [62] such as OGBN-Products and OGBN-Arxiv.

Baseline models. We select LP [194] as the graph-Laplacian baseline. We choose

GCN [82] and SAGE [59], two of the most representative GNNs, as the non-linear

baseline models. We then select logistic regression (denoted as Linear), SGC, and

C&S as the linear baseline models. We implement three types of TrainlessGNN,

including Trainless Linear, Trainless SGC, and Trainless C&S, corresponding

to the trainless versions of the linear baseline models.

Evaluation protocols. We evaluate the models based on the accuracy of the test

set. For datasets with predefined train/test splits (Planetoid and OGBN datasets),

we follow their splits and run the evaluation 10 times for different model initializa-

95

tions. For datasets without predefined splits, we follow previous studies of semi-

supervised node classification tasks [131], splitting the labeled nodes into train-

ing/validations/testing sets for 10 splits. For each split, we randomly pick 20/30

nodes from each class label as the training/validation sets and leave the rest as the

testing sets. We then evaluate the model performance on 10 splits and report the

average and standard deviations of the accuracy.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.55

1.60

1.65

1.70
1.75

1.80

1.85

Figure 5.5: Training loss landscape while training SGC on Citeseer. The red star (⋆)
denotes Trainless SGC.

96

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

92

92

93

93

93 94

94

94

94

94

94

Figure 5.6: Training accuracy landscape while training SGC on Citeseer. The red
star (⋆) denotes Trainless SGC.

5.6.2 Results

We present our results in two parts. Initially, we fit TrainlessGNN using only the

labeled nodes from the training set, which is the conventional approach for training

GNNs. This is favorable to baseline models. Subsequently, we include labeled nodes

from both training and validation sets to fit the model. This comparison remains

fair as TrainlessGNN, with only tunable hyperparameter ω, is less likely to overfit

on training data, eliminating the need for an exclusive validation set to prevent

overfitting. Conversely, typical neural networks, especially in over parameterized

domains, are prone to overfitting to zero loss, necessitating a validation set for model

generalization. The results of both scenarios are shown in Table 5.2.

97

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

69.0

70.0

70.5

71.0

71.5
71.5

Figure 5.7: Testing accuracy landscape while training SGC on Citeseer. The red star
(⋆) denotes Trainless SGC.

TrainlessGNN on training sets. When fit on the training set, TrainlessGNN

achieves comparable performance across various benchmarks to trained models. Specif-

ically, on Cora and Pubmed, TrainlessGNN matches the performance of trained mod-

els, and notably surpasses them on Citeseer, CS, and Physics by 0.3% to 2.6%. How-

ever, on four other datasets, our trainless method trails slightly. Among these, Com-

puters and Photo exhibit a weak quasi-orthogonal property, while the OGB datasets

have more training labels relative to node attribute dimensions, affirming the impor-

tance of quasi-orthogonal property and over-parameterization in Assumption 1 for

our method.

98

TrainlessGNN on both training and validation sets. The inclusion of vali-

dation labels is a distinct advantage of TrainlessGNN, further enhancing its perfor-

mance. Specifically, on the three Planetoid and two Coauthor datasets, Trainless-

GNN outperforms all baseline models significantly when fitted with both training

and validation labels. Remarkably, our trainless models even exceed the performance

of trained GCN/SAGE models, which possess higher expressiveness with non-linear

MLPs. For the remaining datasets, including the validation set also boosts Train-

lessGNN’s performance, aligning it with that of trained models.

5.6.3 Trained vs Trainless weight matrix

We extend our analysis by contrasting the weight matrix obtained through our

method with that learned via a standard gradient descent process under cross entropy.

We illustrate the learning trajectory of SGC over the initial 20 epochs alongside the

fitted Trainless SGC on the Citeseer dataset. In Figure 5.5, the training loss

of SGC steadily diminishes through optimization towards a minimal point, a trend

guaranteed by the convex nature of the loss function. Conversely, while Trainless SGC

settles at a point with relatively higher loss, its accuracy on both training (Figure

5.6) and testing (Figure 5.7) sets achieves a level comparable to the trained model.

This insight implies that attaining high accuracy does not indispensably hinge on the

optimization of surrogate loss. A well-generalizable model can indeed be identified

without resorting to gradient descent training.

5.6.4 Varying attribute dimensions

Recalling Assumption 1, we assume that a large attribute dimension is crucial for

over-parameterization, enabling our closed-form solution to approximate the optimal

point effectively. We test this by varying the attribute dimensions of node attributes

in the three Planetoid datasets [28], using both BOW and TF-IDF text encodings.

99

Figure 5.8: Performance comparison between Trainless Linear and Linear across
varying attribute dimensions and textual encodings, with a consistent training set of
20 labeled nodes. Attribute dimensions greater than 20 (i.e., d > 20) represent an
over-parameterization regime.

We compare the performance of a Trainless Linear and a trained logistic regression

(Linear) across these encodings. The results, presented in Figure 5.8, indicate that

increasing attribute dimensions enhances the performance of the Trainless Linear

model over the trained one. This supports the effectiveness of our trainless approach

in semi-supervised node classification with sparse labels and lengthy text-encoded

node attributes.

100

Figure 5.9: Performance of our methods on heterophilous graphs.

5.6.5 Beyond homophilous graphs

Typical GNNs like GCN and SGC generally assume graph homophily, where

nodes predominantly link to similar nodes [113]. However, this isn’t always the case.

To assess our trainless models’ effectiveness on heterophilous graphs, we experiment

with two such graphs: Texas and Cornell [29]. We include AGC [23], a baseline

model designed for heterophilous graphs, for comparison. As Figure 5.9 illustrates,

our model, TrainlessGNN, not only surpasses GCN and SGC but also delivers per-

formance on par with AGC. This demonstrates TrainlessGNN’s adaptability to both

homo/heterophilous graph structures.

5.6.6 Training efficiency

Our experiments on training efficiency show that our trainless methods are markedly

faster than traditional gradient descent optimization. Owing to its one-step compu-

tation, TrainlessGNN are up to two orders of magnitude quicker than conventionally

trained GNNs, including GCN and SGC. Detailed comparisons are provided in Figure

101

D.1 in the Appendix.

5.7 Conclusion

In this study, we ventured into an alternative approach to fitting the GNN model

for addressing the semi-supervised node classification problem on TAG, bypassing the

traditional gradient descent training process. We analyze the distinctive challenges

inherent to semi-supervised node classification and investigate the training dynamics

of GNNs on text-attributed graphs. Subsequently, we introduce TrainlessGNN, a

novel method capable of fitting a linear GNN without resorting to the gradient de-

scent training procedure. Our comprehensive experimental evaluations show that our

trainless models can either align with or even outperform their traditionally trained

counterparts.

102

PART III

ADAPTABLE GNNS

103

CHAPTER 6

ADAPTING PRETRAINED GNNS TO NEW GRAPH

6.1 Overview

This chapter addresses the adaptability of GNNs by proposing a universal link

prediction framework (UniLP), designed to transfer knowledge learned from previ-

ously encountered graphs and adapt dynamically to new graphs during inference.

Traditional GNNs are usually trained individually for each graph, which significantly

limits their ability to generalize across different graph datasets—particularly when

the target graph has limited training data. To overcome this limitation, we intro-

duce UniLP, which directly encodes link representations at inference time using the

unique connectivity patterns present in each target graph. This approach leverages

an attention mechanism to dynamically adjust representations, effectively captur-

ing graph-specific structural contexts without requiring additional training. Exten-

sive experiments confirm that UniLP achieves competitive or superior performance

across diverse graph datasets compared to traditional methods that require dedicated

training. It demonstrates that UniLP significantly enhances GNNs adaptability and

broadens their practical application scope.

This chapter primarily builds upon a pre-print manuscript [41] in collaboration

with Haitao Mao, Zhichun Guo, and Nitesh V. Chawla.

104

6.2 Introduction

Graph-structured data is ubiquitous across diverse domains, including social net-

works [91], protein-protein interactions [141], movie recommendations [85], and cita-

tion networks [169]. It encapsulates the complex relationships among entities, serving

as a powerful data structure for analytical exploration. At the heart of graph analysis

lies the task of link prediction (LP) [37, 58, 168], a crucial problem aimed at forecast-

ing missing or future connections within these networks. Over the years, the quest to

enhance LP accuracy has advanced the development of numerous methodologies [87],

broadly categorized into two main classes of approaches.

The first line of works is non-parametric heuristics link predictors, including

Common Neighbor (CN) [91], Preferential Attachment (PA) [9], Resource Alloca-

tion (RA) [191] and Katz index [78]. By discovering and abstracting the universal

structural properties underlying different graphs [9, 60, 158], heuristics methods are

developed based on observing the connectivity patterns existing in real-world graph

datasets. For example, CN assumes the tendency of triadic closure [45], such that a

friend’s friend is likely to be friends in a social network. These heuristics link predic-

tors can be readily applied to any graph dataset with great generalizability. However,

this approach relies on predefined heuristics, crafted from human expertise into the

graph connectivity. Despite the initial success via capturing one specific connectivity

pattern, they fail to capture all the effective structural features in the link prediction,

leading to suboptimal performance when applied indiscriminately.

The other line of works is parametric link predictors, which automatically learn

the connectivity patterns by fitting the LP models to the target graphs. These

parametric methods, especially those Graph Neural Networks [59, 82] for Link Pre-

diction (GNN4LP), have dominated the leaderboard of the link prediction tasks [62].

Typically, these GNN4LP are provably the most expressive models such that the

link representation is permutation-invariant [182]. They can capture more effective

105

structural features compared to the simpler heuristics counterparts. However, their

dependency on extensive training for each new graph dataset and the necessity for

hyperparameter optimization [22, 38, 155] present notable challenges for their appli-

cation across diverse graph environments.

Given that (1) the heuristics methods can be readily applied to any graphs without

training based on common connectivity patterns and (2) the parametric model can

automatically capture the connectivity patterns by fitting on the graph, a natural

question arises:

Can a singular LP model automatically learn and apply the connectivity

pattern across new, unseen graphs without the need for direct training?

An affirmative response would not only pioneer a new frontier in graph machine learn-

ing but also align with the transformative potential observed in foundation models

across text and image processing fields [18, 83]. These models’ exceptional generaliz-

ability, driven by their capability of transfer learning [173], offers a blueprint for the

development of a universal LP model capable of broad applicability without explicit

fitting.

Present work. In this study, we introduce the Universal Link Predictor (UniLP),

a novel model designed for immediate application across diverse graph environments1

without the prerequisite of model fitting. Our investigation starts by assessing

whether existing LP models possess the capability to transfer connectivity pattern

knowledge from one graph to another. Through empirical and theoretical analyses

spanning both heuristic and parametric link predictors, we uncover a significant chal-

lenge: negative transfer [152] can happen when directly transferring the connectivity

1In this study, we focus on non-attributed graphs. This choice is informed by previous findings
indicating that node attributes have minimal impact on the effectiveness of LP tasks [38].

106

patterns across distinct graph datasets, including both real-world and synthetic ex-

amples. This complexity arises from the inherent diversity and flexibility of graph

data, leading to unique connectivity patterns for each graph.

To equip UniLP with the capability to adapt to diverse graphs without the need

for training, we are inspired by the concept of In-context Learning (ICL) as utilized by

large language models (LLMs) [18]. ICL enables models to adapt to new datasets or

tasks through the relevant demonstration examples [153]. Analogously, for adapting

our LP model to a particular graph, we select a collection of in-context links to act

as such demonstration examples. These in-context links not only provide a context

for link prediction but also aid in capturing the unique connectivity pattern inherent

to the graph in question. To achieve link representations that are conditioned on the

graph’s specific connectivity pattern, we employ an attention mechanism [16, 147].

This mechanism facilitates dynamic adjustment of link representations in response to

the graph context, enabling the model to accurately reflect the unique connectivity

patterns of each graph.

We have curated a diverse collection of graph datasets spanning multiple domains,

providing a rich variety of connectivity patterns for benchmarking. Through extensive

experiments on these datasets, we demonstrate the seamless applicability of UniLP to

novel and unseen graph datasets without requiring dataset-specific fitting. Notably,

UniLP, empowered with ICL, exhibits the capability to meet or even exceed the

performance levels of LP models that have been pretrained and finetuned for specific

target graphs. This achievement underscores UniLP’s broad applicability and robust

adaptability, establishing a groundbreaking approach to link prediction tasks.

In summary, our contributions to the field of link prediction are:

• We pioneer in highlighting the challenges of applying a singular LP model
across various graph datasets due to conflicting connectivity patterns, a finding
supported by both empirical evidence and theoretical analysis.

• Addressing these challenges, we introduce UniLP, a novel LP approach leverag-

107

ing ICL for dynamic adaptation to new graphs in real-time, thereby eliminating
the need for traditional training processes.

• The diverse collection of graph datasets we’ve collected facilitates extensive
validation of UniLP’s adaptability. Our experiments confirm that UniLP is not
only capable of adjusting to any new graph dataset during inference but also
achieves competitive performance, marking a significant advancement in link
prediction methodologies.

6.3 Can one model fit all?

Machine learning models perform a task by learning from data. The quest for

generalizability in machine learning models has led to significant advancement in

domains such as natural language processing (NLP) [18, 147] and computer vision

(CV) [12, 83]. Foundation models in these fields have demonstrated remarkable gen-

eralizability across unseen datasets [36], primarily due to their training on extensive

data, which enables them to learn transferable knowledge.

In the context of LP tasks, the heuristics link predictors can be seen as a type of

transferable knowledge. These predictors, crafted by manually analyzing common con-

nectivity patterns in real-world graphs, offer insights into the underlying structure of

networks. However, the validity of applying these heuristics universally is questioned,

especially considering the wide spectrum of graph data. For instance, social networks

like Facebook often exhibit a community-oriented structure [111]. Conversely, net-

works adhering to a scale-free power-law distribution [9], such as the World Wide

Web, tend to favor a Preferential Attachment connectivity pattern. Through both

empirical and theoretical examination, we aim to explore the challenges posed by the

direct application of connectivity patterns from one graph to another. Our findings

will reveal that such an approach may lead to negative transfer [152], emphasizing

the critical need for adaptable strategies in the face of graph diversity.

108

6.3.1 Empirical evaluation on transferability

Our exploration begins with an empirical investigation aimed at understanding

the transferability of learned connectivity patterns across diverse graph domains.

We curate a collection of real-world graphs from varied fields in Table E.1, ensuring

comprehensive illustrations of different graph types.

To assess the potential of the important connectivity pattern, learned from one

graph, to influence the LP performance on another, we incorporate extra graphs into

the training phase of the target graph. In other words, this experiment deviates from

the standard supervised learning approach by introducing additional training signals

from other graphs. If the connectivity patterns from these extra graphs align with

or augment the structure of the target graph, the LP model’s performance should

either remain stable or improve. To make the experiment tractable, we only introduce

one additional graph into the training graph and then make a link prediction on

the target graph. This additional graph is kept disconnected from the target graph

to ensure that the test set remains the same as standard LP tasks. . In these

experiments, we employ SEAL [178] as the backbone model for the experiment and

adopt Hits@50 as the performance metrics [62].

Results are presented in Figure 6.1. It shows how the LP model’s performance

is affected by the introduction of additional graph data during training. In the

heatmap, warm colors represent an improvement in LP performance, while cooler

colors denote a performance decrease. The predominance of cooler colors in the

heatmap reveals that integrating an extra graph into training generally results in

performance degradation. This observation underscores the potential discordance

in the underlying characteristics of different graphs, leading to conflicts between the

learned connectivity patterns . This phenomenon highlights the inherent challenge in

deploying a singular LP model across various graphs, thus questioning the feasibility

of a “one model fits all” approach in the context of LP tasks.

109

Figure 6.1: Performance change of SEAL [178] after training with one additional

graph. Adenotes statistically significant change.

6.3.2 Conflicting patterns across graphs

In this section, we delve into the theoretical aspects of how the unique character-

istics of different graphs can hinder the transferability of connectivity patterns. We

begin with a formal definition and preliminary discussion of LP.

Preliminary. Consider an undirected graph G = (V,Eo). V is the set of nodes with

size n, which can be indexed as {i}ni=1. E
o denotes the observed set of links, which is

a subset Eo ⊆ E∗ of the complete set of true links E∗ ⊆ V ×V . Here, E∗ encompasses

not only the observed links but also potential links that are currently absent or may

110

form in the future within the graph G. For any node v ∈ V , N (v) = {u|(u, v) ∈ Eo}

denotes the neighbors of node v. The set of k-hop simple paths from node u to v

is denoted as πk(u, v) = {(v1, v2, . . . , vk)|v1 = u, vk = v and (vi, vi+1) ∈ Eo for i ∈

{1, . . . , k−1}}. Note that paths only contain distinct nodes. We denote the shortest-

path between a node pair (u, v) as SP(u, v).

The objective of LP tasks is to identify the set of unobserved true links Eu ⊆

E∗\Eo within a given graph G. This task diverges from typical binary classification

problems, as the potential candidates for Eu are predetermined: they consist of all

node pairs not already included in the observed links V × V \Eo. In practical terms,

“identifying” Eu equates to ranking these unobserved true links higher than false

links based on their link features [62, 168]. This ranking process is defined by what

we term connectivity patterns2:

Definition 5. Connectivity pattern is an ordered sequence of events ω =

[A1, A2, . . .] such that p(y = 1|Ai) ≥ p(y = 1|Aj) for any i < j.

Here, an event A refers to a specific set of conditions met by the link features

of a node pair. In LP tasks, connectivity patterns may be determined by human

experts using heuristic methods or by training parametric link predictors. For ex-

ample, in social networks, a simple connectivity pattern might be ω = [CN(u, v) ≥

1, CN(u, v) = 0], suggesting that pairs of users with common friends are more likely

to connect than those without any.

The ability to transfer a connectivity pattern from one graph to another suggests

the potential for LP models to be applicable to new, previously unseen graphs. How-

ever, a mismatch in the ranking of connectivity patterns between the training and

target graphs could lead to inaccuracies, since the model can assign higher scores to

2We have an in-depth analysis on how connectivity patterns differ from and relate to graph dis-
tributions in Appendix E.2.1, where we illustrate that graphs with different underlying distribution
could have the shared connectivity pattern.

111

unlikely links and lower scores to likely ones.

Figure 6.2: Two synthetic graphs with different connectivity patterns: (a) Grid
lattice graph; (b) Triangular lattice graph.

Next, we demonstrate that even structurally similar synthetic graphs can exhibit

different connectivity patterns. We begin by considering two types of lattice graphs:

a Grid graph, similar to a chessboard, where nodes are evenly spaced on a 2D grid,

each connected to its four nearest neighbors; and a Triangular graph, derived from

the Grid by adding one diagonal edge within each square unit. Despite their struc-

tural similarities, these graphs, Grid and Triangular, display divergent connectivity

patterns:

Theorem 7. Define A2 = |π2(u, v)| ≥ 1 and A3 = |π3(u, v)| ≥ 1 as elements of ω.

The connectivity patterns on Grid and Triangular graphs are distinct. Specifically:

(i) On Grid: ω = [A3, A2]; (ii) On Triangular: ω = [A2, A3].

The proof is in Appendix 7. In essence, in Triangular graphs, node pairs two hops

112

away are more likely to form a link compared to those three hops away. Conversely,

in Grid graphs, despite their structural similarity to Triangular graphs, node pairs

two hops away have no likelihood of linking.

This observation of conflicting connectivity patterns across similar graphs un-

derlines the challenges in knowledge transfer for LP tasks. Even slight structural

variations in graphs can significantly alter the likelihood of link formation between

nodes. Consequently, the task of developing a universal link predictor, capable of

adapting to any graph without specific tuning for its connectivity pattern, is a non-

trivial endeavor.

6.3.3 Contextualizing Link Prediction

The challenge of conflicting connectivity patterns across different graphs high-

lights a critical issue: a model trained on one graph may break down when applied

to another without accommodating the unique characteristics of the target graph.

To mitigate this, we suggest a paradigm where the model dynamically adapts to the

target graph by taking into account its specific characteristics.

This adjustment process involves conditioning the model on the target graph’s

properties, thereby ensuring that the prediction of link formation, p(1|A), is influ-

enced not just by the inherent link features but also by the properties of the tar-

get graph. We draw inspiration from the concept of In-context Learning (ICL) in

LLMs [31], which enables LLMs to solve tasks with a few demonstration examples.

We propose the incorporation of the target graph as a contextual element c in the link

prediction p(1|A, c). By doing so, the model learns to understand the joint distribu-

tion of link features and the graph context, allowing it to adapt to different graphs.

In the subsequent section, we will delve into the practical implementation of an LP

model equipped with ICL capabilities.

113

Figure 6.3: Overview of the Universal Link Predictor framework. (a) For predicting a
query link q, we initially sample positive (s+) and negative (s−) in-context links from
the target graph. Both the query link and these in-context links are independently
processed through a shared subgraph GNN encoder. An attention mechanism then
calculates scores based on the similarity between the query link and the in-context
links. (b) The final representation of the query link, contextualized by the target
graph, is obtained through a weighted summation, which combines the representa-
tions of the in-context links with their respective labels.

6.4 Universal Link Predictor

This section outlines our proposed UniLP, designed for effective application to

unseen datasets. UniLP operates by first sampling a set of in-context links from the

target graph, which are then independently encoded alongside the target link using

a shared GNN encoder. An attention mechanism is employed to merge the represen-

tations of these in-context links in relation to their interaction with the target link,

forming a composite representation for the final prediction. The overall framework

is in Figure 6.3.

114

6.4.1 Query and in-context links

For a given target link q ∈ V × V in graph G, we define it as the query link. To

predict this link based on the contextual information of G, we start by sampling a set

of in-context links from G. Specifically, we select k node pairs S+ ⊆ Eo as positive

examples, where S+ = {s+1 , s+2 , . . . , s+k }. These pairs have existing links between them

in G. Similarly, we gather negative examples S− = {s−1 , s−2 , . . . , s−k } ⊆ V × V \Eo,

comprising k node pairs without a link. The combined set S+ ∪ S− approximates

the overall properties of G and provides a context c for the model to perform LP

(p(1|A, c)) using both link features and graph context.

Once we get the query link and the in-context links, we need to obtain the struc-

tural representation for them. We start by extracting the ego-subgraph for each of

them. An ego-subgraph G((u, v), r, G) for a node pair (u, v) is a subgraph induced

by all the r-hop neighboring nodes of the nodes u and v on the graph G:

G((u, v), r, G) = (Vs, Es),

where Vs = {i|SP(i, u) ≤ r or SP(i, v) ≤ r} and Es = {(i, j) ∈ Eo|i, j ∈ Vs}. For

simplicity, we denote such an ego-subgraph as G(e) for the node pair e = (u, v) when

there is no ambiguity. The ego-subgraphs for the query link and the in-context links

are {G(e)|e ∈ {q}
⋃
S+
⋃
S−}.

Utilizing ego-subgraphs to represent links offers several key advantages over using

either individual node pairs or the entire graph. Firstly, an ego-subgraph provides

a richer structural context than a mere node pair, encapsulating the local neighbor-

hood structure around the link in question. This approach allows for a more detailed

and informative representation of the link’s local structures. Secondly, ego-subgraphs

serve as an effective and computationally efficient approximation of global link fea-

tures [178]. This is advantageous over the resource-intensive process of encoding the

115

entire graph. Lastly, representations at the subgraph level are inherently more ex-

pressive compared to node-level representations [54]. This enhanced expressiveness

is crucial for capturing the structures of links and performing accurate LPs.

6.4.2 Encoding ego-subgraphs

The ego-subgraphs within the set {G(e)|e ∈ {q}∪S+∪S−} vary in size, requiring

a uniform approach to representation. We employ GNNs to encode these subgraphs

into a consistent latent space.

In the absence of node features in non-attributed graphs, typical GNNs [59, 82,

167] require initial input vectors for each node. Common methods like assigning

identical or random vectors meet this requirement but lack expressiveness about

graph structures [90, 182]. To address this, we utilize the labeling trick technique,

assigning each node i in G(e) a positional encoding based on its relative position to

the target link e = (u, v).

Our approach, DRNL+, is a variant of Double Radius Node Labeling

(DRNL) [178] and Distance Encoding (DE) [90]. In DRNL, nodes i in G(e) are

assigned integer labels as follows:

DRNL(i, (u, v)) = 1 + min(du, dv) + (d/2)[(d/2) + (d%2)− 1],

where du := SP(i, u), dv := SP(i, v), and d := du + dv. However, DRNL doesn’t

distinguish nodes reachable to only one of the target nodes. Thus, DRNL+ enhances

this by using DE to assign a tuple of integers:

DRNL+(i, (u, v)) =


(0, du), if dv = ∞

(0, dv), if du = ∞

(DRNL(i, (u, v)), 0),otherwise

(6.1)

116

After the labeling trick indicates relative positions, we apply the SAGE [59] with

mean aggregation to update node representations. The final subgraph representa-

tion, he ∈ RF for each link e ∈ {q}
⋃
S+
⋃
S−, is derived by average pooling the

representations of all nodes in G(e). We find that mean aggregation and pooling

work best for such a universal link predictor, hypothesizing that this approach bet-

ter accommodates varying graph sizes and node degrees, thereby enhancing model

generalizability.

6.4.3 Link prediction with context

Once the ego-subgraphs are encoded into latent space, we utilize these represen-

tations {he|e ∈ {q} ∪ S+ ∪ S−} to parameterize our link predictor p(1|A, c) via an

attention mechanism [147].

The attention scores a between the query link representation hq and each in-

context link representation hs for s ∈ S+ ∪ S− are calculated using additive atten-

tion [16, 112]:

as = p⊤LeakyReLU (Wk · [hq∥hs]) , (6.2)

where p⊤ ∈ RF ′
is a learnable vector and Wk ∈ RF ′×2F is a projection matrix. The

concatenation operation is denoted by ∥. The normalized attention scores α are

obtained as follows:

αs = softmax (as) =
exp (as)∑

e∈S+
⋃

S− exp (ae)
. (6.3)

We denote the attention score between the query link and a positive in-context link

s+ ∈ S+ as α+, and with a negative in-context link as α−. Like in Transformer and

GAT models [16, 149], multi-head attention can also be employed to capture diverse

interactions between graph structures.

117

Remark. The attention scores are pivotal for shaping the query link’s representa-

tion in the context of the target graph. We intentionally exclude label information

from the attention score computation to avoid biasing the model towards easy predic-

tions during training. This approach aligns with an “unsupervised” learning strategy,

as opposed to a “supervised” one, where label information might lead the model to

rely excessively on seen patterns, thus turning the attention mechanism into a de

facto classifier. This could hinder the model’s ability to generalize and adapt across

varying graph structures, increasing the risk of overfitting to specific connectivity

patterns not applicable to new, unseen graphs. Our empirical findings support this

methodology, demonstrating that keeping the attention computation label-free sig-

nificantly boosts the model’s generalizability.

After the normalized attention scores α are determined, we compute the final

representation for the query link q. This is achieved by applying a weighted sum

to the representations of the in-context links, using the attention scores as weights.

Additionally, we integrate label information into the in-context links’ representations

by adding corresponding learnable vectors. Formally, the final representation is cal-

culated as follows:

h̃q =
∑

s∈S+
α+
s Wv

(
hs + l+

)
+
∑

s∈S−
α−
s Wv

(
hs + l−

)
, (6.4)

where l+, l− ∈ RF ′
are learnable vectors for labels, and Wv ∈ RF ′×F is a value

projection matrix. The representation h̃q encapsulates both the link features of the

query link q and an estimation of the target graph G, and is then input into an MLP

classifier to produce the link prediction result:

p(1|A, c) = σ
(
MLP

(
h̃q

))
, (6.5)

where σ (·) denotes a sigmoid function.

118

6.4.4 Pretraining objective

The pretraining objective for UniLP focuses on predicting the query link q based

on its own features and the context of the graph it is part of. We align this objective

with standard binary classification as seen in typical parametric link prediction algo-

rithms [22, 38, 178]. In this setting, the classification label ye for an edge e is set to

1 if e is among the observed links Eo; otherwise, ye is 0. Additionally, we consider a

set of pretrain graphs G, with each graph G being a member of this set. The overall

pretraining loss is then defined as:

L = EG∈G,e∈V×VBCE
(
MLP

(
h̃e

)
, ye

)
. (6.6)

This loss function is employed across multiple graphs, allowing UniLP to learn a

generalizable pattern for link prediction across various graph structures.

6.5 Related work

Link prediction. Traditional LP methods are handcrafted heuristics designed by

observing the connectivity pattern in real-world data. They leverage either the link’s

local [4, 9, 91, 191] or global information [78, 116] to infer the missing links in the

graph. OLP [55] stacks the heuristics link predictors as a feature vector and fits

a random forest as the classifier. WLNM [177] is one of the pioneers in training a

neural network as a link predictor. GAE [81], as the first GNN4LP, utilizes GNNs to

encode the graph structure into node representation and perform the link prediction

task. SEAL [178, 182] points out that a link-level representation is necessary for

a successful LP method and proposes the labeling trick to enable GNNs to learn

the joint structural representation. ELPH [22], NCNC [155], and MPLP [38] further

improve the scalability of GNN4LP and achieve the state-of-the-arts on various graph

benchmarks.

119

In-context Learning. The remarkable efficacy of LLMs across a broad spectrum

of language tasks is significantly attributed to their adeptness in ICL [18]. This

capability allows LLMs to generalize to new tasks by leveraging demonstration ex-

amples, effectively learning the required skills on the fly. Irie et al. [68] delves into

the equivalence between conventional model training and the application of attention

mechanisms to training samples during inference, suggesting an underlying mecha-

nism of ICL. Further exploration by Dai et al. [31] posits that ICL facilitates an

implicit optimization process guided by in-context examples. While the concept of

ICL has been primarily associated with LLMs, Prodigy [65] represents an initial at-

tempt to adapt ICL for GNN-based models. Their approach, however, is somewhat

constrained by the overlap in pretrain and test datasets, which raises questions about

the method’s transferability across distinct graph domains.

6.6 Experiments

In this section, we conduct extensive experiments to assess the performance of

UniLP on new unseen datasets.

6.6.1 Experimental setup

Benchmark datasets. The foundation for our model’s training is a collection of

graph datasets spanning a variety of domains. Following [97], we have carefully se-

lected graph data from fields such as biology [150, 158, 180], transport [10, 158],

web [3, 5, 136], academia collaboration [110, 131], citation [169], and social net-

works [128]. This diverse selection ensures that we can pretrain and evaluate the LP

model based on a wide array of connectivity patterns. The details of the curated

graph datasets can be found in Table E.1 in Appendix.

120

Baseline Methods. We compare UniLP with both heuristic and GNN-based para-

metric link predictors. Heuristic methods include Common Neighbor (CN) [91],

Adamic-Adar index (AA) [4], Resource Allocation (RA) [191], Preferential Attach-

ment (PA) [9], Shortest-Path (SP), and Katz index (Katz) [78]. GNN-based methods

include GAE [81], SEAL [178], ELPH [22], NCNC [155], and MPLP [38]. For GAE

and NCNC, which require initial node features, we use a 32-dimensional all-one vec-

tor. All other methods can handle non-attributed graphs directly.

Evaluation of UniLP. To evaluate UniLP’s effectiveness on unseen datasets, we

divide our graph data into non-overlapping pretrain and testing sets (see Table E.1)

and pretrain one single model on the combined pretrain datasets. During pretraining,

we dynamically sample 40 positive and negative links as in-context links S+ ∪S− for

each query link from the corresponding pretrain dataset. For evaluation, each test

dataset is split into 70%/10%/20% for training/validation/testing. The training set

here forms the observed links Eo, while validation and test sets represent unobserved

links Eu. During the inference, we sample 200 positive and negative links as in-

context links per test dataset. We report Hits@50 [62] as the evaluation metric for

LP. More details about the pretraining of UniLP can be found in Appendix E.1.2.

Evaluation of Baselines. Baseline models follow similar evaluation procedures,

with adaptations for transfer learning capabilities. We employ two settings: (1)

Pretrain Only, where models are trained on combined pretrain datasets and then

tested on each test dataset, and (2) Pretrain & Finetune, where after pretraining,

models are additionally finetuned on each test dataset with 200 sampled positive and

negative links for training.

121

6.6.2 Primary results

TABLE 6.1

LINK PREDICTION RESULTS.

Biology Transport Web Collaboration Citation Social

C.ele USAir PB NS CS Cora Facebook Ave. Rank

Heuristics

CN 46.88±12.28 82.75±1.54 41.15±3.77 74.03±1.59 56.84±15.56 33.85±0.93 58.70±0.35 11.00

AA 61.07±5.16 86.96±2.24 44.12±3.36 74.03±1.59 68.22±1.08 33.85±0.93 67.80±2.12 5.71

RA 62.80±4.84 87.27±1.89 43.72±2.86 74.03±1.59 68.21±1.08 33.85±0.93 68.84±2.03 5.57

PA 43.85±4.12 77.69±2.29 28.93±1.91 35.35±3.01 6.49±0.61 22.09±1.52 12.95±0.63 13.71

SP 0.00±0.00 0.00±0.00 0.00±0.00 80.00±1.11 41.34±35.58 52.97±1.53 0.00±0.00 13.14

Katz 58.86±6.48 84.64±1.86 44.36±3.65 78.96±1.35 66.32±5.59 52.97±1.53 60.79±0.60 6.86

Pretrain Only

SEAL 61.28±3.76 86.00±1.56 45.44±2.68 84.07±1.96 62.82±1.62 56.21±2.24 54.57±1.48 5.57

GAE 44.71±3.39 76.12±2.27 27.56±2.34 15.20±2.14 5.08±0.48 24.22±1.53 6.65±0.57 14.14

ELPH 59.23±4.50 84.42±2.22 43.69±2.90 84.27±1.43 70.69±3.63 56.91±1.43 61.80±2.46 5.57

NCNC 48.07±4.79 75.44±4.22 25.66±1.42 80.07±1.43 34.27±2.28 52.51±2.54 19.28±1.58 11.57

MPLP 56.74±5.31 82.94±2.30 47.78±2.55 80.33±1.54 24.26±1.28 46.71±2.25 48.06±2.09 8.86

Pretrain & Finetune

SEAL 64.45±4.14 88.49±2.16 47.78±3.32 84.84±2.32 61.54±3.09 62.19±3.27 58.70±2.78 3.14

GAE 44.71±4.07 74.47±2.96 25.92±2.64 18.34±2.27 4.95±0.44 25.31±1.48 6.11±0.39 14.71

ELPH 60.51±5.72 84.52±2.08 43.58±3.48 86.08±0.69 71.10±3.48 57.18±1.89 63.31±3.63 4.71

NCNC 64.45±5.10 85.85±2.46 47.75±6.90 88.25±2.25 58.75±5.74 60.00±2.50 59.32±6.93 3.71

MPLP 62.56±4.79 85.08±1.54 48.01±2.94 80.16±1.18 50.35±1.01 56.02±2.09 56.72±1.20 6.14

Ours

UniLP 65.20±4.40 85.98±2.00 48.14±2.99 89.09±2.05 64.59±2.65 57.50±2.40 65.49±2.05 1.86

Link prediction results on test datasets evaluated by Hits@50. The format is average score ±
standard deviation. The top three models are colored by First, Second, Third.

122

Table 6.1 presents the performance of UniLP on various unseen graph datasets.

The results demonstrate that UniLP outperforms both traditional heuristic methods

and standard GNN-based LP models that are pretrained without specific adaptation,

showing significant improvements in 4 out of 7 the benchmark datasets. This perfor-

mance enhancement suggests that tailoring the LP model to individual graphs can

markedly increase its transfer learning capabilities.

Moreover, UniLP achieves comparable or even superior results to GNN-based LP

models that undergo finetuning, despite not being explicitly trained on the test data.

This highlights the effectiveness of the ICL capability in UniLP, which allows the

model to adapt seamlessly to specific graph datasets without the need for additional

training. By leveraging in-context links provided during the inference phase, UniLP

can dynamically adjust its knowledge of connectivity patterns, demonstrating its

potential to deliver robust performance across a wide range of unseen graph datasets.

In addition, the experimental results on the synthetic Triangular/Grid lattice graphs

can be found in Table 6.3.

6.6.3 The inner mechanism of UniLP

We further explore the capability of our proposed model’s ICL to facilitate skill

learning [99, 117], enabling the model to acquire new skills not encountered during

the pretraining phase, guided by ICL demonstrations. This investigation focuses on

the model’s performance sensitivity to corrupting in-context links, particularly when

these links are presented with incorrect input-label associations. Given that each

in-context link consists of an input and its corresponding label, we introduce two

perturbation strategies to assess this sensitivity: FlipLabel: we invert the labels

of the in-context links, labeling previously positive links as negative and vice versa.

RandomContext: Instead of selecting in-context links from the target graph, we

randomly sample them from a graph generated using the Stochastic Block Model [60].

123

TABLE 6.2

LINK PREDICTION RESULTS UNDER CONTEXT PERTURBATION.

Biology Transport Web Collaboration Citation Social

C.ele USAir PB NS CS Cora Facebook

UniLP-FlipLabel 0.61±0.27 15.81±13.17 0.03±0.03 27.97±4.29 0.60±0.23 2.03±0.55 0.32±0.15

UniLP-RandomContext 52.89±5.90 81.91±2.14 47.47±3.05 85.60±1.23 47.80±6.48 37.62±5.64 22.17±6.55

UniLP 65.20±4.40 85.98±2.00 48.14±2.99 89.09±2.05 64.59±2.65 57.50±2.40 65.49±2.05

Link prediction results on test datasets evaluated by Hits@50 under context perturbation.
This table presents the outcomes of link prediction when the context, i.e., in-context links,
is deliberately altered. The aim is to analyze how changes in the context influence the final
prediction accuracy.

The outcomes, as shown in Table 6.2, reveal that flipping the labels of in-context

links significantly degrades the model’s performance, rendering it almost ineffective.

This finding underscores the model’s utilization of ICL for skill learning, specifically in

learning new feature-label mappings within a given context [106, 159]. It highlights

the pivotal role of accurate label information in in-context links for the model’s

effective adaptation to the target graph.

Furthermore, using randomly generated graphs as a source of in-context links also

detrimentally affects performance, albeit to varying extents across different datasets.

This implies the importance of choosing in-context links that genuinely represent the

properties of the target graph. Interestingly, the less severe performance decline in

some datasets may indicate their inherent community-based graph structures.

6.6.4 Effectiveness of in-context links’ size

This experiment evaluates how varying the quantity of in-context links affects

UniLP’s performance during inference. We experiment with different numbers of in-

context links, ranging from 10 to 400, sampled from each test graph . These links are

124

Figure 6.4: Performance of UniLP with varying quantities of in-context links.

used as context for the model. Additionally, we utilize SEAL as the base model and

assess its performance under finetuning (FT) and supervised training (SUP) from

scratch with varying training sample sizes. For comparison, we also include results

from training a SEAL model on the full set of target graph data (Full), as detailed

in Figure 6.4.

The findings reveal a consistent improvement in UniLP’s performance with an

increasing number of in-context links. This indicates that our method can more

effectively capture the target graph’s properties with additional context. Notably, on

four of the test datasets, UniLP either matches or exceeds the performance of models

trained end-to-end on the entire graph. This suggests that leveraging more pretrpre-

train data can be advantageous for LP tasks when properly managed. Furthermore,

despite both UniLP and the finetuned models being pretrained on the same datasets

and using the same in-context links, UniLP occasionally outperforms its finetuned

counterparts. This observation suggests that in some cases, utilizing ICL can be a

more effective approach for adapting a pretrained model to a specific target dataset

compared to finetuning. The trend on the rest of graphs can be found in Figure E.1.

125

6.6.5 Visualization of the link representation

We conduct a comparative visualization of link representations as learned by a

Pretrained Only SEAL model and UniLP. This comparison is shown in Figure 6.5

and Figure 6.6. The results indicate that a naively pretrained model tends to map

link representations from various graph datasets into a close subspace, potentially

leading to indistinguishable link representations across different graphs, even when

these graphs exhibit conflicting connectivity patterns.

Figure 6.5: Visualization of the link representation from Pretrain Only SEAL. Dif-
ferent colors indicate different test datasets.

126

Figure 6.6: Visualization of the link representation from UniLP. Different colors
indicate different test datasets.

In contrast, the link representations generated by UniLP, which are conditioned on

the context of the target graph, demonstrate a distinct separation between different

datasets. This separation is indicative of UniLP’s effective ICL capability, which

adeptly captures the subtle distributional differences across graphs. By adjusting the

link representations based on the context provided by in-context links, UniLP can

effectively address the challenge of conflicting connectivity patterns in diverse graph

datasets.

127

6.6.6 Synthetic graphs

TABLE 6.3

LINK PREDICTION RESULTS ON SYNTHETIC GRAPHS.

Triangular Grid

Heuristics

CN 73.58±0.81 0.00±0.00

AA 73.58±0.81 0.00±0.00

RA 73.58±0.81 0.00±0.00

PA 0.00±0.00 0.00±0.00

SP 97.91±0.63 86.04±1.11

Katz 90.08±0.67 56.79±0.99

SEAL

Supervised 99.29±0.28 79.45±1.09

Pretrained Only 98.11±0.84 61.48±0.57

Pretrain & Finetune 98.35±0.57 78.24±0.79

Ours

UniLP 98.73±0.49 77.39±1.38

Link prediction results on synthetic Tri-
angular/Grid lattice graphs evaluated by
Hits@50. The format is average score ± stan-
dard deviation. The top three models are
colored by First, Second, Third.

We deployed our pretrained UniLP on the synthetic graph shown in Figure 6.2,

with outcomes presented in Table 6.3. These findings demonstrate that UniLP

matches the performance of both models that are fully trained on the entire graph and

those that undergo explicit finetuning. This performance underscores the efficacy of

UniLP’s ICL capability, affirming its ability to dynamically adapt to synthetic graph

128

environments and learn connectivity patterns directly from in-context links without

the need for additional training or finetuning.

6.6.7 Diversifying context

Figure 6.7: Diverse sets of in-context links on LP performance.

129

In our prior analysis, we utilized a set of in-context links sampled from each target

graph to serve as context. This section delves into the impact of varying these in-

context links by employing different random seeds, aiming to discern the sensitivity

of UniLP’s performance to the specific composition of in-context links for each target

graph. The outcomes of this investigation are detailed in Figure 6.7. The findings

reveal that the choice of in-context links indeed affects UniLP’s performance across

the test datasets to varying extents, highlighting the importance of the selection

process for these contextual links in optimizing the model’s efficacy. We leave the

study on the selection of the in-context links as future work.

6.6.8 Varying positive-to-negative ratios of in-context links

In our previous exploration of LP performance, we initially maintain a balanced

set of positive and negative in-context links for each query link during both pretrain-

ing and testing phases. This study delves into the effects of changeing the ratio of

positive to negative in-context links, while keeping the total count constant at 200, to

assess the impact on LP accuracy. The findings, shown in Figure 6.8, reveal several

noteworthy observations.

Remarkably, for the majority of graph datasets examined, increasing the propor-

tion of negative samples—contrary to intuitive expectations—does not detract from

performance and, in some cases, matches the efficacy of a balanced distribution of

in-context links. This phenomenon indicates that negative samples are equally infor-

mative as positive ones for leveraging the ICL capabilities of UniLP. Specifically, in

the case of the synthetic Grid graph, a higher ratio of negative samples significantly

enhances LP performance, given a fixed total number of in-context links. This im-

provement may stem from the symmetry of positive link structures within the Grid

graph, which exhibit a consistent connectivity pattern. The introduction of a greater

variety of negative samples seems to enrich the model’s learning context, effectively

130

Figure 6.8: Influence of positive-to-negative in-context link ratios on LP performance.

harnessing UniLP’s ICL potential to capture more diverse patterns.

An exception to this trend is observed with the Facebook graph dataset, where

a balance between positive and negative in-context links yields the most favorable

outcomes. This suggests that for certain graph types, a balanced approach to in-

context link selection optimizes LP performance.

6.7 Conclusion

In this paper, we introduce the Universal Link Predictor, a novel approach de-

signed to be immediately applicable to any unseen graph dataset without the ne-

131

cessity of training or finetuning. Recognizing the issue of conflicting connectivity

patterns among diverse graph datasets, we innovatively employ ICL to dynamically

adjust link representations according to the specific properties of the target graph by

conditioning on support links as contextual input. Through extensive experimental

evaluations, we have demonstrated the effectiveness of our method. Notably, our

Universal Link Predictor excels in its ability to adapt seamlessly to new, unseen

graphs, surpassing traditional models that require explicit training. This significant

advancement presents a promising direction for future research and applications in

the field of LP.

132

CHAPTER 7

ADAPTING GNNS TO RELATIONAL DATABASE

7.1 Overview

This chapter further expands the adaptability of GNNs by exploring their appli-

cation in scenarios where data is not originally represented in graph form, specifically

focusing on relational databases. Despite their extensive practical use in tasks such

as recommender systems, fraud detection, ad click prediction, and demand forecast-

ing, relational databases have been largely overlooked by contemporary deep learning

literature. Addressing this gap, we propose transforming relational databases into

unified heterogeneous graphs, enabling the direct application of end-to-end GNN

models. Traditionally, tasks on relational databases require extensive manual feature

engineering to consolidate useful information, increasing complexity and limiting the

generalizability of model architectures. By converting relational data into graphs, we

integrate feature learning and task modeling into a single step, enabling end-to-end

training of GNNs. This unified approach significantly simplifies the modeling process

and broadens the practical applicability of GNNs beyond conventional graph-based

domains. We demonstrate the effectiveness of this strategy by applying GNNs to the

task of transaction categorization in QuickBooks, achieving significant performance

compared to existing baselines deployed in production.

This chapter primarily builds upon a joint work with Padmaja Jonnalagedda,

Xiang Gao, Ayan Acharya, Maria Kissa, Mauricio Flores, Nitesh V. Chawla, and

Kamalika Das.

133

7.2 Introduction

Figure 7.1: The schema of the relational database of QuickBooks transactions.

QuickBooks offers essential bookkeeping and accounting capabilities tailored to

the needs of small and medium-sized businesses. It enables them to efficiently manage

critical aspects of their business operations, including accounting, payroll, payments,

and inventory. A key feature of QuickBooks is its ability to categorize financial

activities flexibly, enhancing insights into business performance and streamlining tax

compliance. By automating labor-intensive and error-prone tasks, QuickBooks allows

business owners to focus on driving growth and increasing revenue.

At the core of QuickBooks’s functionality is its advanced banking experience.

Most business transactions today are processed through financial institutions, and

QuickBooks integrates seamlessly with these institutions, enabling businesses to link

their accounts and synchronize data. This connectivity triggers an influx of transac-

tions—approximately 6.2 billion annually into QuickBooks. Having business owners

or accountants manually review their transactions would be an ineffective use of their

134

time. Automating the processing of such a vast volume of transactions is crucial.

To facilitate its sophisticated accounting features, QuickBooks organizes transac-

tions into specific categories or accounts. For example, a fuel purchase at an Exxon-

Mobil station might be categorized under “Cars and Trucks”, while an electricity

bill could be classified as “Utilities”. This paper addresses QuickBooks’s transaction

categorization challenge, employing state-of-the-art methods in natural language pro-

cessing [34] and graph machine learning [17] to conceptualize this as a link prediction

problem [38] within a relational database. Drawing inspiration from Relational Deep

Learning [51], we propose a unified approach to effectively model the transaction

database through interconnected relational tables, introducing modifications specific

to the unique challenges and practical requirements of QuickBooks.

7.2.1 Problem statement

In QuickBooks, effective bookkeeping relies on the accurate categorization of

transactions into specific accounts. Businesses have unique needs and preferences for

how transactions are categorized. QuickBooks accommodates this by allowing cus-

tomization of account names. This feature enables different companies to maintain

both common and distinct account names based on their individual requirements.

To further refine the organization of financial data and support compliance with

tax regulations, QuickBooks encourages users to classify these account names into a

structured hierarchy of more abstract account types. This system not only person-

alizes the accounting experience for each business but also guarantees the accurate

recording of financial activities. The more abstract account type, referred to as Code,

corresponds to the IRS tax code, while the more granular account name, Category, is

user-defined. For example, Category “Airfare” and “Internet” can both be grouped

into a more abstract Code “Expenses”.

The primary task we address in this paper is predicting the appropriate Cate-

135

gory for any new transaction imported into QuickBooks. In addition to delivering

the most likely categorization for a new transaction, we explore providing the top-5

probable Categories. This approach is predicated on the likelihood that the com-

pany’s preferred Category is more often found within the top-5 predictions rather

than solely the top prediction. Offering a selection of probable Categories can signif-

icantly enhance user trust in QuickBooks’s capabilities, fostering a stronger reliance

on QuickBooks for critical financial management tasks.

The data supporting this transaction categorization task is managed within a

relational database, where various tables are interconnected through primary and

foreign keys. The database schema, detailed in Figure 7.1, includes the following

critical tables:

1. Transaction table: Stores records of all transactions across different compa-
nies.

2. Category table: Contains all specific account names used by QuickBooks
users.

3. Code table: Includes the abstract account types aligned with overarching tax
codes, that facilitate the organization of Category .

4. Company table: Contains information about companies utilizing Quick-
Books.

7.2.2 Related Works

Transaction categorization is fundamental to the user experience in QuickBooks.

To date, two main approaches have been developed to address this task.

The first approach, known as IRIS [88], categorizes incoming transactions based

solely on a company’s historical data. It begins by extracting business entity names

from transaction descriptions using a rule-based normalization process that includes

case folding and digit folding. IRIS then queries the company’s historical transactions

for similar business entities, defining similarity via Jaccard similarity—entities are

136

considered similar if they are frequently categorized together. A weighted voting

mechanism is then employed to determine the most likely Category for the new

transaction. While IRIS is an efficient system capable of managing large datasets

and ensuring quick database queries, its reliance on a company’s historical data limits

its generalizability and scalability, especially for new users with limited transaction

history.

The second methodology is embodied in the Shorthair and Lynx [92], currently

the production model in QuickBooks. Shorthair addresses the limitations of IRIS

by enhancing performance for users new to the system (cold-start users) with a

populational model. It utilizes a Word2Vec-based [104] encoding for transactions and

Category , and applies a contrastive learning framework to maximize the matching

pairs of transaction-Category and minimize the non-matching pairs. Lynx, built

on top of Shorthair, employs a logistic regression classifier to enable personalized

categorization for each company. During inference, a calibrated model of Shorthair

and Lynx is applied to predict the category of a new transaction. Although the

Shorthair and Lynx model has demonstrated effective performance in practice within

QuickBooks, maintaining an individual logistic regression classifier for each company

introduces significant overhead and risks of overfitting. Additionally, calibrating two

models can lead to suboptimal performance due to challenges in effectively leveraging

strengths of both models.

7.2.3 Challenges and Contributions

Challenges. The transaction categorization task in QuickBooks presents several

core challenges. Firstly, the transaction data is structured as a relational database,

posing challenges on how to effectively model it using a unified machine learning

approach. Secondly, the transaction description field, crucial for identifying the se-

mantic meaning of a transaction, often follows the formatting standards of financial

137

institutions rather than natural language. This necessitates an effective method to en-

code transaction data, capturing nuances such as business entity names and financial

acronyms. Thirdly, the vast scale and skewed distribution of Category labels result in

a highly imbalanced learning scenario. The categorization is highly personalized so

that one transaction can be put into different Category by different users. Traditional

multi-class classifiers can struggle with effectiveness and generalizability on this task.

Last but not the least, the large volume of transactions processed by QuickBooks

requires a balance between model capability and computational efficiency to ensure

real-time performance.

Contributions. We summarize our contributions as follows:

1. To model the relational database of the transaction data, we transform the
database to a heterogeneous graph and apply a unified graph model, Rel-Cat,
to effectively represent the relationships within the data and support both new
and old users of QuickBooks. To the best of our knowledge, we are the first
to apply the principles of Relational Deep Learning to a real-world problem in
practice.

2. To encode the transaction data with unique linguistic characteristics, we inte-
grate a trained-from-scratch text encoder Txn-Bert into Rel-Cat, which can
effectively capture the semantics of the transaction data.

3. To handle large-scale transaction efficiently, we introduce practical techniques
to improve Rel-Cat’s scalability, including a novel diversity filtering protocol, a
similarity-based neighbor sampling, edge direction dropping, and Top-K Near-
est Neighbor early exit.

7.3 Txn-Bert: Text Encoder trained from scratch

In this section, we introduce Txn-Bert, a text encoder developed specifically for

encoding transaction descriptions into fixed-length embeddings. The entire encoder is

trained from scratch, recognizing the unique linguistic patterns found in transaction

data. We begin with the rationale behind pretraining a new language model, followed

by the detailed process of the training of the transformer model.

138

7.3.1 Unique Linguistic Characteristics of Transaction Data

To effectively convert transaction text data into embeddings, it is essential to first

examine the unique characteristics of this data.

Transaction descriptions, found in banking statements, serve as crucial identifiers

for financial activities within businesses. These descriptions adhere to formatting

standards set by financial institutions. For instance, Visa mandates that business

entity names in transaction descriptions be no longer than 25 characters, requiring

abbreviations as necessary.1.

Such descriptions, therefore, consist predominantly of abbreviated business

names, a feature markedly distinct from the more fluid and expansive natural lan-

guage. This distinctiveness necessitates a specialized approach for encoding trans-

action. The conventional language models, typically pretrained on generic natural

language datasets, do not suffice for capturing the nuances of transaction descrip-

tions. This inadequacy forms the core motivation for developing Txn-Bert from the

ground up, ensuring it is finely tuned to the specific lexicon and syntax of transaction

language.

7.3.2 Training the tokenizer

Transaction descriptions, by their nature, resemble a constructed language dis-

tinct from natural language due to the structured format. This unique format is

filled with variations of business entity names and their abbreviations, necessitating

a customized vocabulary for effective text processing.

To create this specialized tokenizer, we start by gathering all available transaction

descriptions to form a dedicated corpus. We employ the WordPiece tokenization

method [130]—similar to the one used in the BERT model [164]—but develop a

1https://usa.visa.com/content/dam/VCOM/download/merchants/visa-merchant-data-
standards-manual.pdf

139

unique vocabulary tailored to the transaction descriptions.

Figure 7.2: Tokenization of transactions by BERT and Txn-Bert. Bert tokenizer
tends to split business entity names to sub-tokens, while Txn-Bert tokenizer can
keep them complete.

Figure 7.3: Txn-Bert can tokenize transactions into fewer tokens.

We compare the tokenization of transaction descriptions between the standard

BERT model and our pretrained Txn-Bert. As illustrated in Figure 7.2, the stan-

140

dard BERT tokenizer often breaks down business names into smaller pieces, whether

abbreviated or not. This occurs because these business names, despite being preva-

lent in transaction descriptions, are not included in the standard BERT vocabulary,

which is designed for general natural language. In contrast, our custom-built tok-

enizer, which is trained specifically on transaction data, recognizes complete business

names as single tokens. This capability not only simplifies the text representation

but also allows for more efficient data processing, as shown in Figure 7.3. This in-

dicates that our trained-from-scratch tokenizer can capture the entire transaction

descriptions with fewer bits and represent the text distribution better.

7.3.3 Training the transformer model

Figure 7.4: Training paradigm of Txn-Bert.

141

Once we have built a tokenizer customized for transaction descriptions, the next

step is to train our text encoder from scratch. We train the model to classify new

transactions into specific Category solely based on the information from that trans-

action—like its description, amount, and any additional memo—without consider-

ing the historical patterns of the company. We model our training approach after

Sentence-Bert [125], treating it as a sentence pair matching problem to match trans-

actions to Category . The training paradigm of Txn-Bert is shown in Figure 7.4. We

adopt a Siamese network architecture, where a shared text encoder independently

processes a pair of a transaction and its corresponding Category .

We format each transaction by combining its key fields into a single sentence.

We include the {description}, {amount}, and {memo}. We also add a {polarity}

field, which labels the transaction as “received” if the amount is positive or “paid” if

it’s negative. The complete transaction text looks something like this: “Transaction

{polarity} ${amount} for: {description} {memo}.” For the Category labels, we use

them just as they are.

The text encoder is a transformer [147], which will refine the representation of

each token iteratively through the transformer blocks. After processing through these

layers, we take a mean pooling strategy to get a single representation for the whole

sentence. The configuration of the transformer can be found in Appendix F.1.1.

The training objective mirrors the CLIP approach [124], optimizing for high co-

sine similarity between matched transaction-Category pairs and low similarity for

unmatched pairs. We use a symmetric cross-entropy loss. More specifically, given a

batch of N transaction-Category pairs {(Ti, Li)|1 ≤ i ≤ N}, and our text encoder

f(·), the training loss is:

L = − 1

N

N∑
i=1

log

(
eSim(f(Ti),f(Li))∑N
j=1 e

Sim(f(Ti),f(Lj))

)
+ log

(
eSim(f(Ti),f(Li))∑N
j=1 e

Sim(f(Tj),f(Li))

)

142

where Sim(v, w) = v·w
|v|·|w| represents the cosine similarity.

This method leverages all non-matching pairs within a batch for contrastive learn-

ing, thus eliminating the need for explicit negative sampling. This effective training

allows Txn-Bert to robustly encode transaction and Category data for use in down-

stream tasks.

7.4 Rel-Cat: Modeling relations within database

In this section, we introduce Rel-Cat. We outline our approach for preprocessing

a relational database into a heterogeneous graph, thereby redefining the transaction

categorization task as a link prediction problem within this graph. We then de-

scribe Rel-Cat, a hybrid method combining rule-based early exit (TopK NN) with a

robust heterogeneous graph neural network (GNN). The overview pipeline can be

found in Figure 7.5.

7.4.1 Build a heterogeneous graph from a relational database

The transaction data in QuickBooks is organized within a relational database

comprising multiple interconnected tables, each representing different facets of the

transaction data. To unify modeling across this multi-table architecture, we employ

the concept of Relational Deep Learning [51], transforming the relational database

into a heterogeneous graph. We provide an overview of this transformation process

with a conversion diagram depicted in Figure 7.6.

7.4.1.1 Conversion overview

Referencing Figure 7.1, the relational database for transaction data consists of

four key components:

1. Multiple tables: The database is structured into several tables, each detailing
a specific aspect of the transactions.

143

Build Graph TopK NN

Find
similar

 transactions?

Yes

No

GNN

Figure 7.5: The overview pipeline of Rel-Cat.

2. Rows within tables: Each table comprises multiple rows, each row encapsu-
lating a distinct transaction or fact.

3. Foreign-primary key relationships: Rows across different tables are inter-
connected via foreign-primary key associations, facilitating relational references
among them.

4. Row attributes: Each row includes attributes that describe its elements, such
as the transaction description in the transaction table or the company name in
the company table.

These elements of the relational database are mapped to the components of a

heterogeneous graph as follows:

1. Node types: Each table in the database is treated as a distinct node type
within the graph.

2. Nodes: Individual rows within a table are represented as nodes with the node
type corresponding to their table.

3. Edges: Connections between rows (nodes) across tables, facilitated by foreign-
primary key pairs, are represented as edges in the graph.

4. Node attributes: Attributes of each row, particularly textual data, are uti-
lized as node attributes in the graph.

144

7.4.2 Conversion details

Adopting the notations from [51], we define the relational database as (T ,L),

consisting of a collection of tables T = {Ti} where i represents different tables such

as “transaction”, “company”, “Code”, or “Category”. The relationships between

these tables are captured by links L ⊆ T × T . An edge L = (Tfkey, Tpkey) exists if a

foreign key column in Tfkey points to a primary key column in Tpkey.

Each table T comprises a set of rows T = {v1, . . . , vnT
}, where each row v ∈ T

includes three components: (1) Primary key pv uniquely identifies the row v within

its table. (2) Foreign keys Kv ⊆ {pv′ : v′ ∈ T ′ and (T, T ′) ∈ L} establish connections

to rows v′ in other tables T ′. (3) Attributes xv hold the informational content of the

row, such as textual data, which are encoded using Txn-Bert to generate embeddings.

We also define the relation type R = L ∪ L−1, where L−1 =

{(Tpkey, Tfkey)|(Tfkey, Tpkey) ∈ L}, representing the inverse of the primary-foreign key

links. The heterogeneous graph is formalized as G = (V , E , ϕ, ψ):

1. V : Node set, representing rows across all tables.

2. E ⊆ V × V : Edge set, representing relationships based on primary-foreign key
mappings.

3. ϕ : V → T : Node type mapping function, assigning each node to its corre-
sponding node type (table).

4. ψ : E → R: Edge type mapping function, linking each edge to its relation type.

We then map the elements of the relational database (T ,L) to the elements of the

heterogeneous graph G = (V , E , ϕ, ψ). We first define the node set in the converted

graph as the union of all rows in all tables V =
⋃

T∈T T . Its edge set is then defined

as

E = {(v1, v2) ∈ V × V | pv2 ∈ Kv1 or pv1 ∈ Kvv}. (7.1)

That is, the edge set is the row pairs that arise from the primary-foreign key re-

lationships in the database. Therefore, the type mapping function can be defined

145

as ϕ(v) = T for all v ∈ T and ψ(v1, v2) = (ϕ(v1), ϕ(v2)) ∈ R if (v1, v2) ∈ E . The

attributes xv hold the node attributes for each node v.

Figure 7.6: Transformation of a relational database into a heterogeneous graph for
transaction categorization. (a) A new transaction enters the system without a foreign
key connection to the Category table. (b) The heterogeneous graph is built from the
relational database, where transaction categorization is formulated as a link predic-
tion task. (c) Two-hop connections for transaction nodes mitigate over-squashing
and improve model expressiveness.

7.4.2.1 Transform to a link prediction task

In the heterogeneous graph we’ve constructed, historical transaction nodes v ∈

Ttransaction, that have already been categorized form links with corresponding Cate-

gory nodes, such that pv′ ∈ Kv where v′ ∈ TCategory . However, new transactions that

have not yet been categorized enter the graph without any existing links to Cate-

gory nodes (pv′ /∈ Kv where v′ ∈ TCategory). This scenario redefines the transaction

categorization task. Instead of assigning a Category to each new transaction, our

task shifts to predicting which Category node in the graph should be linked to the

new transaction node. Essentially, the categorization challenge is transformed into a

146

link prediction task as shown in Figure 7.6 (a), where the objective is to determine

the most appropriate connections for uncategorized transaction nodes based on the

graph’s existing structure and the attributes of its nodes.

7.4.3 Model the heterogeneous graph

This section details how Rel-Cat models the heterogeneous graph G. We employ

a message-passing Graph Neural Network (GNN) [57], specifically a variant of Graph-

SAGE [59], to encode node representations. Given the graph’s diverse node and edge

types, we adapt our approach to model message-passing along different edge types

separately. Each message type is initially processed through a homogeneous GNN.

Messages from various edge types are then combined using a second-level aggregation

function to get a comprehensive node representation:

h(i+1)
v =tϕ(v)

(
h(i)
v ,AGGHeter({AGGHomo({gR(h

(i)
w) | (7.2)

w ∈ NR(v)})
∣∣∣∀R = (T, ϕ(v)) ∈ R})

)
,

where NR(v) = {w ∈ V | (w, v) ∈ E and ψ(w, v) = R} is the neighborhood of

node v under the specific edge type R. Here, AGGHomo employs a mean operator

to normalize message contributions within the same type, while AGGHeter uses an

attention mechanism [147] to dynamically weight the importance of messages from

different types, enhancing the model’s ability to prioritize relevant incoming messages.

7.4.3.1 Two-hop connections for transaction nodes

Our initial node representation learning framework in Rel-Cat, as outlined

in Equation 7.2, aggregates messages from immediate neighbors within the graph

G. While effective, this approach can introduce issues inherent in GNNs such as

over-squashing [7] and limited expressiveness [167], which we address through graph

147

data augmentation.

Graph data augmentation. When GNNs learn the node representation of the

target transaction in Figure 7.6 (b), they have to propagate at least two rounds of

message passing to receive the information from the historical transactions of the same

company. To enhance node representation, especially for the target transaction node,

we introduce an additional type of edge within transaction nodes, effectively making

historical transactions direct neighbors of the target transaction. This adjustment

allows the target transaction to aggregate messages from historical transactions in

just one message-passing iteration. The augmented graph with these new connections

is shown in Figure 7.6 (c). For this new edge type (transaction to transaction), we

utilize the GATv2 [16] as the aggregation operator (AGGHomo). While applying

GATv2 to all edge types can lead to GPU memory issues, using it for this specific

edge type does not significantly increase memory requirements.

Specifically, we introduce an extra set of edges Eaug into the original graph:

Eaug = {(v1, v2) ∈ V × V | v1, v2 ∈ Ttransaction, ∃vc ∈ Tcompany, pc ∈ Kv1 ∩ Kv2}.

The edge set Eaug is the set of transaction pairs if they are from the same company.

Next, we discuss how this modification can mitigate the two issues.

Addressing over-squashing. GNNs learn the node representation iteratively

from the local neighborhood. However, due to this recurrent learning paradigm,

GNNs often face a challenge where the information from a growing receptive field is

compressed into a fixed-length vector, potentially losing valuable information. This

phenomenon is prevalent in the transaction graph G. For the target transaction

in Figure 7.6 (b), the message from its historical transactions is equally compressed

into one fixed-length vector. Since this message is not conditioned on the target

148

transaction, it cannot adjust itself so that the signals more important to the target

transaction are preserved. By rewiring the graph and applying a weighted message

aggregator like GATv2, it can effectively enable the target transaction’s incoming

message to keep the most relevant information [7], enhancing the effectiveness of the

prediction.

Enhancing expressiveness. GNNs essentially simulate the Weisfeiler-Lehman

graph isomorphism algorithm [167]. This limits their expressiveness in terms of dis-

tinguishing non-isomorphic graphs. By directly connecting two-hop neighbors (his-

torical transactions) as immediate neighbors to the target transaction in graph G,

our model approximates a K-hop GNN approach [48]. This augmentation not only

improves expressiveness but does so without significantly increasing computational

costs, thus maintains a balance between accuracy and efficiency.

7.4.4 Training objective

The transformation of the relational database into the heterogeneous graph G

redefines our task as a link prediction challenge. In essence, link prediction in this

context is a ranking problem where the model is expected to rank the correct node

pair (the ground truth link) higher than other node pairs (non-connected links).

Specifically, for a transaction node vi and its corresponding Category node vj in

graph G, the score of (vi, vj) should be higher than that of any other Category node

pair (vi, vk), where vk represents any Category node not connected to vi. We utilize

the inner product as the scoring function between transaction and Category nodes,

employing AUCLoss [157], a surrogate for AUC, as the training objective of Rel-Cat:

L =
∑

(vi,vj)∈E+,(vi,vk)∈E−

(1− (hi ∗ hj) + (hi ∗ hk))
2 , (7.3)

149

where hv denotes the final representation of either a transaction or Category node

from Equation 7.2. The set of positive node pairs E+ is chosen as:

E+ ⊆ {(vi, vj) ∈ Ttransaction × TCategory | pvj ∈ Kvi}. (7.4)

The set of negative node pairs, E−, includes non-connected links, defined as:

E− ⊆ {(vi, vk) ∈ Ttransaction × TCategory | pvj /∈ Kvi}. (7.5)

7.4.4.1 Weighted negative sampling

The set of negative node pairs, E−, consists of non-connected links. Due to

the impracticality of enumerating all potential negative pairs, we employ a negative

sampling strategy. For a transaction node vi and its corresponding positive Category

node vj, simple uniform sampling from TCategory \ {vj} would be suboptimal due to

the long-tail distribution of Category . This could prevent effective learning if those

Category nodes vk, which rarely appear as positives, are sampled as negatives. To

address this, we employ a weighted multinomial distribution for negative sampling,

where weights are assigned proportional to the normalized frequency of Category

appearances, enhancing the relevance and challenge of the sampled negatives.

7.4.4.2 Distribution shift mitigation

During training, the existing edge connections between transaction and Category

nodes in E+ can potentially create a distribution shift [37]. These connections can

be inadvertently learned as shortcuts by the GNN, which are not available during

testing, thereby affecting model performance. To mitigate this, we adopt a strategy

similar to the FakeEdge method [37], but implement in batch mode. Specifically, in

each training epoch, we randomly select approximately 5% of all positive node pairs

150

from E+ to serve as our positive set E+. Then, we mask the edges in the graph if the

node pairs are from the positive set:

E := E \ E+. (7.6)

This separation creates two distinct edge groups within the graph: one that provides

the training signals without any direct links (E+), and another that maintains the

graph structure for message passing (E \ E+). This ensures that during training, the

connections used for supervision do not give away the actual links, thus preventing

the model from leveraging these as shortcuts and better simulating the conditions it

will encounter during testing.

7.4.5 Scalability and practical designs

In this section, we detail several scalability improvements to Rel-Cat, designed

to effectively manage the extensive volume of transaction data encountered in real-

world applications. We discuss practical designs to reduce neighborhood sizes for

transaction and Category nodes during node representation encoding and introduce

a rule-based early exit method, Top K Nearest Neighbor, to efficiently manage the

workload on GNNs.

7.4.5.1 Reducing neighborhood size

Given that GNNs encode node representations by aggregating features from local

neighborhoods, large neighborhoods can pose significant scalability challenges, partic-

ularly in terms of memory consumption. To address this, we implement a node-wise

neighbor sampling strategy. Different from existing methods [53, 59, 172], we further

take node types into consideration to optimize the receptive field of the GNNs. We

employ distinct strategies for transaction nodes and Category nodes:

151

Similarity-based neighbor sampling for transaction nodes. For transaction

nodes, {v | v ∈ Ttransaction}, the local neighborhood typically includes all historical

transactions associated with the company, which can be extensive. For example,

there are companies owning over 2000 transactions within just one year. To manage

this, we utilize similarity-based neighbor sampling, which reduces neighborhood size

while preserving relevant information.

We compute the cosine similarity between the text embeddings of the target

transaction node and its historical counterparts. Historical transactions are then

sampled based on their similarity scores, prioritizing those most relevant to the target.

This approach not only constrains computational overhead but also ensures that the

most informative connections are maintained in Rel-Cat’s neighborhood. Techniques

like Faiss [42] can be employed to enhance the efficiency of these computations.

Edge direction dropping for Category nodes. Category nodes, {v | v ∈

TCategory}, often have neighborhoods that include a huge set of transaction nodes

linked to them. The popularity of some Category can lead to extremely large neigh-

borhood sizes, which are not only impractical to process, but also ineffective to model.

To mitigate this, we discard all incoming edge connections from transaction to

Category nodes. This adjustment significantly reduces the computational load by

limiting the receptive field to exclude transaction nodes, while outgoing connections

from Category to transaction nodes are kept. This approach not only simplifies

the computation required to encode Category node but also ensures consistency in

Category node representation during inference, as the computational graph remains

unchanged regardless of new transactions being added.

152

7.4.5.2 Top K Nearest Neighbor

Despite the sophisticated capabilities of Rel-Cat, equipped with GNNs to perform

predictions based on graph structure G, real-world scenarios often present varying

degrees of prediction difficulty [119]. Many transactions imported into QuickBooks

by users are very similar or even identical to past entries due to routine business

activities. In such cases, users frequently reuse the same Category as in previous

transactions. Consequently, a significant portion of transactions could be accurately

categorized without necessitating full GNN processing. To capitalize on this, we in-

troduce a streamlined and effective early exit method named Top K Nearest Neighbor

(TopK NN).

Upon the arrival of a new transaction, while we still prepare the graph G for sub-

sequent GNN processing, we first assess if sufficiently similar historical transactions

might already provide reliable predictions. Utilizing the similarity scores computed

during the similarity-based neighbor sampling of transaction nodes, we identify a

subset of historical transactions that exhibit a similarity score exceeding a cutoff, set

at 0.8 for our experiments.

From this subset, we directly derive Category from the topK most similar transac-

tions. Given that our categorization task aims to predict the 5 most likely categories,

Rel-Cat will output these labels directly if 5 distinct Category are available from this

subset. If fewer than 5 categories are available, the graph G is then processed by the

GNNs to generate the remaining predictions.

153

7.5 Experiments

7.5.1 Experimental setup

7.5.1.1 Dataset

To evaluate the performance of Rel-Cat comprehensively, we curated a dataset

from active QuickBooks users as of November 2023. We randomly selected 7, 500

companies and used their two most recent transactions with labeled Category post-

November 2023 as our test set, resulting in a total of 15, 000 transactions. The

remaining companies were included in our training set. This approach ensures our

evaluation set reflects a wide range of user preferences and patterns.

7.5.1.2 Experimental settings

We benchmark the performance of Rel-Cat against the current production models

in QuickBooks, namely Shorthair and Lynx. We assess the models using the metrics

of Top 1, Top 2, and Top 5 accuracy, which measure whether the correct label is

among the Top k predictions of the model, ranked by the Category scores. We

conduct evaluations under two distinct settings:

Zero Shot: In this setting, categorization is based solely on the information from

the new transaction itself, without any contextual data from the owning company or

its historical transactions. Both Shorthair and Txn-Bert are evaluated under this

setting.

Few Shot: This setting incorporates not only the data from the new transaction

but also contextual information from the owning company and its historical data.

Lynx, TopK NN, and Rel-Cat are assessed under this framework.

154

TABLE 7.1

TRANSACTION CATEGORIZATION EVALUATED BY ACCURACY

UNDER ZERO SHOT AND FEW SHOT SETTINGS.

Methods Top 1 Top 2 Top 5

Zero Shot

Shorthair 36.07 - -

Txn-Bert (6 layers) 43.83 57.96 74.12

Txn-Bert (12 layers) 45.52 59.47 75.46

Few Shot

Lynx 62.49 - -

TopK NN 65.80 73.63 78.55

Rel-Cat (GNNs only) 63.04 74.60 85.19

Rel-Cat 69.38 79.34 87.74

Ablation Study

Rel-Cat (GNNs only) 63.04 74.60 85.19

w/o Txn-Bert 55.46 64.02 73.16

w/o two-hop connections 47.07 61.16 76.58

w/o similarity sampling 56.39 67.89 80.63

w/o GATv2 on transactions 52.07 66.11 81.05

w/o weighted negative sampling 35.02 50.48 68.93

w/o distribution shift mitigations 59.40 71.83 84.12

7.5.2 Results

The experimental results are presented in Table 7.1. In the Zero Shot setting,

Txn-Bert outperforms the production Shorthair model significantly. The Txn-Bert

model with 6 layers achieves a Top 1 accuracy boost of 7.76% and a Top 5 accuracy of

74.12%, indicating that our trained-from-scratch text encoder effectively captures the

semantics of transaction descriptions and maps them accurately to the corresponding

Category . The 12-layer Txn-Bert model shows only marginal improvement over the

6-layer model, suggesting that a lightweight language model pretrained from scratch

is sufficient for encoding transaction data.

155

In the Few Shot setting, Rel-Cat demonstrates substantial performance advan-

tages. It achieves a Top 1 accuracy of 68.67% and a Top 5 accuracy of 88.04%,

significantly outperforming the Lynx production model. Additionally, the TopK NN

method, which uses text embeddings from Txn-Bert, achieves a Top 1 accuracy of

65.80%, surpassing the performance of Rel-Cat with GNNs alone. This result high-

lights the effectiveness of TopK NN in identifying recurring transactions in a user’s

history, thereby enhancing Top 1 accuracy of Rel-Cat.

However, when the transaction categorization must be inferred beyond the user’s

most similar historical transactions, the GNN component of Rel-Cat exhibits su-

perior generalizability, achieving over 85% in Top 5 accuracy. This demonstrates

that while TopK NN is highly effective for repeated transactions, the GNN module of

Rel-Cat provides a broader and more accurate categorization capability for diverse

transaction scenarios.

7.5.3 Ablation Studies

In this section, we delve deeper into the validation of the effectiveness of various

design choices in Rel-Cat.

In Table 7.1, we report ablation studies to validate if the proposed components

in Rel-Cat can enhance the predictive power of transaction categorization. For the

ablation studies, we only include the GNNs module for Rel-Cat.

w/o Txn-Bert (Sec 7.3): Replacing Txn-Bert with off-the-shelf Sentence-

Bert [125], we observe a decrease in performance, underscoring the necessity of a

trained-from-scratch text encoder tailored to transaction data. We further note the

steep drop in performance for the unseen subset.

w/o two-hop connections (Sec 7.4.3.1): This ablation study emphasizes the criti-

cal role of explicit graph augmentation. It demonstrates that directly connecting the

target and historical transactions as neighbors significantly enhances performance.

156

This finding underscores that merely converting a relational database to a heteroge-

neous graph without strategic modifications is inadequate for maximizing the model’s

effectiveness. While this setting has the best performance for the unseen subset, it

comes at the expense of significant decline in overall performance.

w/o similarity sampling (Sec 7.4.5.1): Testing the impact of neighbor sampling

based on semantic similarity, we find that sampling similar historical transactions

in GNN’s computation graphs allows Rel-Cat to leverage relevant information effec-

tively for accurate predictions. We note that this setting also suffers from lack of

generalizability.

w/o GATv2 on transactions (Sec 7.4.3.1). Examining the necessity of GATv2

for transaction-to-transaction message passing, the results indicate that such a GNN

structure enhances Rel-Cat’s performance by enabling conditioned message passing.

w/o weighted negative sampling (Sec 7.4.4.1). This study evaluates the im-

portance of weighted negative sampling in training Rel-Cat. Findings suggest that

this approach is crucial for achieving optimal performance and addressing the chal-

lenges posed by the skewed distribution of Category labels.

w/o distribution shift mitigations 7.4.4.2. Assessing our approach to miti-

gating distribution shift shows that this is a significant issue in link prediction tasks,

which can be effectively managed with strategic consideration of message-passing and

supervision signal edges.

7.5.4 Seen vs Unseen Category in a Company’s history

In Table 7.2, we not only report our overall accuracy, but further break down the

performance of Rel-Cat into Historical Seen and Historical Unseen scenarios. For

Historical Seen, we choose the test samples such that their ground-truth Category

157

TABLE 7.2

PERFORMANCE BREAKDOWN IN DIFFERENT SCENARIOS.

Methods Acc HS HU

TopK NN 65.80 79.72 0.16

Rel-Cat (GNNs only) 63.04 71.15 24.95

Rel-Cat 69.38 79.23 23.09

Methods (GNNs only) Acc HS HU

Rel-Cat (GNNs only) 63.04 71.15 24.95

w/o Txn-Bert 55.46 66.24 4.83

w/o two-hop connections 47.07 51.36 26.93

w/o similarity sampling 56.39 65.26 14.73

Acc is the overall Top 1 accuracy, HS
is the accuracy on Historical Seen subset,
and HU is the accuracy on Historical Un-
seen subset.

is present within the company’s own history as context. For Historical Unseen, we

choose the samples whose Category are present in the overall dataset but unseen to

that company’s history. We note that TopK NN, while having the best performance at

repeated labels, has no predictive power for unseen labels. For this subset, Rel-Cat’s

GNN is able to detect the labels with nearly 25% accuracy, highlighting its general-

izable ability. Rel-Cat has the best overall performance, balancing between both the

subsets, thereby demonstrating the need for GNN and TopK NN hybrid model. Fur-

thermore, analyzing these trends over the ablation studies, we note that each design

choice adds to the overall accuracy, augmenting performance for either or both the

seen and unseen subsets.

158

TABLE 7.3

INFERENCE TIMES FOR 1, 000 TRANSACTIONS.

Walltime (ms) CPU GPU

Txn-Bert 1400 67

Rel-Cat 6808 843

- TopK NN 333 -

- Rel-Cat (GNNs only) 6614 324

Total 8208 910

7.5.4.1 Time complexity

We have assessed the processing time for various components within Rel-Cat,

with the results detailed in Table 7.3. We measure the processing time for 1, 000

transactions in milliseconds (ms). The entire pipeline of Rel-Cat is designed to

operate effectively on both CPU and GPU environments, catering to different pro-

duction system requirements. On a CPU, the lightweight text encoder Txn-Bert

processes 1, 000 transactions in just 1400 milliseconds. To deliver the top 5 predic-

tions, Rel-Cat requires approximately 8 seconds for 1, 000 transactions. In contrast,

utilizing a GPU significantly reduces the processing time to under 1 second for out-

putting the top 5 predictions. This efficiency demonstrates Rel-Cat’s capability to

scale and meet the demands of real-world transaction volumes effectively.

7.6 Conclusion

In this study, we introduce Rel-Cat, a unified model designed for transaction

categorization within QuickBooks. Recognizing the unique linguistic characteristics

of transaction data, we start by developing a trained-from-scratch Txn-Bert text en-

coder, specifically trained to grasp the semantic nuances of transaction descriptions.

159

Subsequently, we employ a GNN-based approach to model the intricate relation-

ships among the tables in a relational database, redefining transaction categorization

as a link prediction task. To address the challenges posed by the high volume of

transactions and the specific demands of the categorization task, we integrate sev-

eral innovative components that significantly boost Rel-Cat’s predictive capabilities.

Our experimental results demonstrate that Rel-Cat not only surpasses previous pro-

duction models in terms of performance but also offers remarkable scalability and

efficiency, making it well-suited for handling large-scale transaction data in real-world

settings.

160

CHAPTER 8

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we have addressed key challenges that currently limit the broader

adoption and effectiveness of Graph Neural Networks (GNNs) in real-world applica-

tions. We have specifically focused on improving GNNs from three critical aspects:

robustness, efficiency, and adaptability.

In Part I, we examined the robustness of GNNs, highlighting two fundamental

limitations: dataset shift and data noise. The structural mismatch between train-

ing and testing phases, known as dataset shift, significantly impacts the reliability of

GNN-based models in link prediction (LP). To mitigate this, we developed FakeEdge,

a model-agnostic method designed to maintain consistent link representations by

correcting the structural gaps between training and testing graphs. Furthermore,

acknowledging that noisy and incomplete graph data directly compromise GNN per-

formance, we proposed COmplete and REduce (CORE), a novel data augmentation

framework that systematically recovers missing edges and removes harmful noise,

thus enhancing model robustness from a data-driven perspective.

In addressing the efficiency of GNNs in Part II, we highlighted two core com-

putational issues that restrict their efficiency: the complexity involved in capturing

essential graph substructures, and the heavy computational burden associated with

iterative training processes. To overcome these challenges, we proposed Message

Passing Link Predictor (MPLP), a method that efficiently estimates critical link-

level substructures while maintaining computational complexity at the node level.

Additionally, we introduced a training-free paradigm, TrainlessGNN, specifically for

161

semi-supervised node classification on text-attributed graphs. By directly approxi-

mating optimal parameters through node attributes and graph structures, this ap-

proach eliminates the need for computationally expensive iterative training, signifi-

cantly enhancing the practicality and scalability of GNN models.

We further investigated GNN adaptability in scenarios requiring models to gen-

eralize beyond individual graphs and even beyond inherently graph-based data. To

address the limited transferability of traditional GNNs, we developed the Universal

Link Predictor (UniLP), a framework capable of leveraging prior knowledge from pre-

viously encountered graphs and adapting dynamically to unseen target graphs during

inference. UniLP achieves this adaptability by utilizing an attention-based mechanism

inspired by In-context Learning. Beyond traditional graph-structured scenarios, we

also expanded GNN applicability into the domain of relational databases—an area

traditionally overlooked by graph-based deep learning approaches. By transforming

relational databases into heterogeneous graphs, we demonstrated that GNNs could

effectively handle real-world business tasks without explicit feature engineering, sig-

nificantly enhancing their adaptability and practical relevance.

Collectively, the methods developed in this thesis advance the field of graph ma-

chine learning, enhancing GNN robustness, efficiency, and adaptability. This thesis

not only empowers GNNs with greater ability to tackle complex problems in the real

world, but also opens several avenues for further advancements and exploration in AI

throughout this dissertation. Moving forward, I intend to pursue research in several

key directions:

Knowledge transfer across graphs. Recent years have shown impressive suc-

cess in pretraining models on large-scale datasets [18, 83]. Particularly within

natural language processing (NLP), large language models trained on extensive

internet-scale data have achieved remarkable performance across diverse downstream

162

tasks [32, 71, 115, 146]. The emergence of scaling laws [77] suggests that a sim-

ilar potential for improvement could exist across other data modalities, including

graphs. Thus, we expect that the modeling capacity of graph data could be sig-

nificantly enhanced through extensive pretraining. Furthermore, knowledge derived

from previously encountered graphs might be beneficial to new target graphs. We

took an initial step toward investigating this possibility in [41], focusing specifically

on knowledge transfer for link prediction tasks. However, several critical questions

remain unresolved regarding the generalizability of graph machine learning. First,

it remains unclear under which conditions transferring knowledge from one graph to

another genuinely benefits downstream tasks; specifically, the extent to which data

distributions differ across various graphs is still debatable. Second, graph machine

learning tasks inherently span multiple levels (node-level, link-level, subgraph-level,

and graph-level), and currently there is no unified approach to handling these dif-

ferent levels simultaneously. This limitation necessitates practical designs of graph

foundation models [98] to have specialized prediction heads for each task level. Mov-

ing forward, I plan to deepen the investigation into cross-graph knowledge transfer,

clearly identifying conditions under which transfer is beneficial. Additionally, I aim

to explore methods for unifying tasks across different levels of graph machine learn-

ing into a single coherent framework, thus paving the way toward more versatile and

generalizable graph models.

Practical applications of GNNs beyond graph-structured data. GNNs have

demonstrated remarkable potential when applied to graph-structured data. The ma-

jority of existing studies have concentrated on established graph benchmarks, such

as 2D molecular graphs [44], social networks [177], citation networks [169], biological

networks [62], and knowledge graphs [195]. However, these benchmarks are natu-

rally represented in graph form, limiting the broader applicability of GNNs. To fully

163

harness the relational modeling capabilities of GNNs, future studies should investi-

gate scenarios where data is not inherently structured as graphs. In Chapter 7, we

successfully demonstrated the application of GNNs to relational databases by solv-

ing a practical transaction categorization task. Motivated by this success, I intend

to further explore the application of GNNs to other domains lacking explicit graph

structures, including relational databases in diverse contexts [126], computer sys-

tems [121], and combinatorial optimization problems [21]. Such investigations will

significantly expand the scope and real-world impact of GNN methodologies.

164

APPENDIX A

FAKEEDGE: ALLEVIATE DATASET SHIFT IN LINK PREDICTION

A.1 Proof of Theorem 1

We restate the Theorem 1: GNN cannot learn the subgraph feature h to be Edge

Invariant.

Proof. Recall that the computation of subgraph feature h involves steps such as:

1. Subgraph Extraction: Extract the subgraph Gr
i,j around the focal node pair

{i, j};

2. Node Representation Learning: Z = GNN(Gr
i,j), where Z ∈ R|V r

i,j |×Fhidden is
the node embedding matrix learned by the GNN encoder;

3. Pooling: h = Pooling(Z;Gr
i,j), where h ∈ RFpooled is the latent feature of the

subgraph Gr
i,j;

Here, GNN is Message Passing Neural Network [57]. Given a subgraph G =

(V,E,xV ,xE), GNN with T layers applies following rules to update the representation

of node i ∈ V :

h
(t+1)
i = Ut(h

(t)
i ,

∑
w∈N (i)

Mt(h
(t)
i , h

(t)
w ,x

E
i,w)), (A.1)

where N (i) is the neighborhood of node i in G, Mt is the message passing function

at layer t and Ut is the node update function at layer t. The hidden states at the

first layer are set as h
(0)
i = xV

i . The hidden states at the last layer are the outputs

Zi = h
(T)
i .

165

Given any subgraph Gr
i,j = (V r

i,j, E
r
i,j,x

V
V r
i,j
,xE

Er
i,j
) with the edge present at the

focal node pair (i, j) ∈ Er
i,j, we construct another isomorphic subgraph Gr

ī,j̄ =

(V r
ī,j̄, E

r
ī,j̄,x

V
V r
ī,j̄
,xE

Er
ī,j̄
), but remove the edge (̄i, j̄) from the edge set Er

ī,j̄ of the sub-

graph. Gr
ī,j̄ can be seen as the counterpart of Gr

i,j in the testing set.

Thus, for the first iteration of node updates t = 1:

h
(1)
i = Ut(h

(0)
i ,

∑
w∈N (i)

Mt(h
(0)
i , h(0)w ,xE

i,w)), (A.2)

h
(1)

ī
= Ut(h

(0)

ī
,
∑

w∈N (̄i)

Mt(h
(0)

ī
, h(0)w ,xE

ī,w)), (A.3)

Note that N (̄i) ∪ {j} = N (i). We have:

h
(1)
i = Ut(h

(0)
i ,

∑
w∈N (i)\{j}

Mt(h
(0)
i , h(0)w ,xE

i,w) +Mt(h
(0)
i , h

(0)
j ,xE

i,j)) (A.4)

= Ut(h
(0)

ī
,
∑

w∈N (̄i)

Mt(h
(0)

ī
, h(0)w ,xE

ī,w) +Mt(h
(0)

ī
, h

(0)

j̄
,xE

ī,j̄)), (A.5)

As Ut is injective, p(h
(1)
i , y = 1|e = 1) ̸= p(h

(1)

ī
, y = 1) = p(h

(1)
i , y = 1|e = 0).

Similarly, we can conclude that p(h
(T)
i , y = 1|e = 1) ̸= p(h

(T)
i , y = 1|e = 0).

As we use the last iteration of node updates h
(T)
i as the final node representation

Z, we have p(Z, y|e = 1) ̸= p(Z, y|e = 0), which leads to p(h, y|e = 1) ̸= p(h, y|e = 0)

and concludes the proof.

A.2 Proof of Theorem 2

We restate the Theorem 2: Given p(h, y|e, c) = p(h, y|e), there is no Dataset

Shift in the link prediction if the subgraph embedding is Edge Invariant. That is,

p(h, y|e) = p(h, y) =⇒ p(h, y|c) = p(h, y).

166

Proof.

p(h = h, y = y|c = c) (A.6)

= Ee[p(h = h, y = y|c = c, e)p(e|c = c)] (A.7)

= Ee[p(h = h, y = y)p(e|c = c)] (A.8)

= p(h = h, y = y). (A.9)

A.3 Details about the baseline methods

To verify the effectiveness of FakeEdge, we tend to introduce minimal modification

to the baseline models and make them compatible with FakeEdge techniques. The

baseline models in our experiments are mainly from the two streams of link prediction

models. One is the GAE-like model, including GCN [82], SAGE [59], GIN [167] and

PLNLP [157]. The other includes SEAL [178] and WalkPool [118]. GCN, SAGE and

PLNLP learn the node representation and apply a score function on the focal node

pair to represent the link. As GAE-like models are not implemented in the fashion

of subgraph link prediction, the subgraph extraction step is necessary for them as

preprocessing. We follow the code from the labeling trick [182], which implements the

GAE models as the subgraph link prediction task. In particular, GIN concatenates

the node embedding from different layers to learn the node representation and applies

a subgraph-level readout to aggregate as the subgraph representation. As suggested

by [90, 182], we always inject the distance information with the Double-Radius Node

Labeling [178] (DRNL) to enhance the model performance of GAE-like models. In

terms of the selection of hyperparameters, we use the same configuration as [182]

on datasets Cora, Citeseer and Pubmed. As they do not have experiments on other

8 networks without attributes, we set the subgraph hop number as 2 and leave the

167

rest of them as default. For PLNLP, we also add a subgraph extraction step without

modifying the core part of the pairwise learning strategy. We find that the per-

formance of PLNLP under subgraph setting is very unstable on different train/test

splits. In particular, the performance’s standard deviation of PLNLP is over 10% on

each experiment. Therefore, we also apply DRNL to stabilize the model.

SEAL and WalkPool have applied one of the FakeEdge techniques in their initial

implementation. SEAL uses a Edge Minus strategy to remove all the edges at focal

node pair as a preprocessing step, while WalkPool applies Edge Plus to always inject

edges into the subgraph for node representation learning. Additionally, WalkPool

has the walk-based pooling method operating on both the Edge Plus and Edge Mi-

nus graphs. This design is kept in our experiment. Thus, our FakeEdge technique

only takes effect on the node representation step for WalkPool. From the results in

Section 2.6.2, we can conclude that the dataset shift issue on the node representa-

tion solely would significantly impact the model performance. We also use the same

hyperparameter settings as originally reported in their paper.

A.4 Benchmark dataset descriptions

The graph datasets with node attributes are three citation networks: Cora [102],

Citeseer [56] and Pubmed [109]. Nodes represent publications and edges represent

citation links. The graph datasets without node attributes are: (1) USAir [10]:

a graph of US Air lines; (2) NS [110]: a collaboration network of network science

researchers; (3) PB [3]: a graph of links between web pages on US political topic;

(4) Yeast [150]: a protein-protein interaction network in yeast; (5) C.ele [158]:

the neural network of Caenorhabditis elegans; (6) Power [158]: the network of the

western USś electric grid; (7) Router [136]: the Internet connection at the router-

level; (8) E.coli [180]: the reaction network of metabolites in Escherichia coli. The

detailed statistics of the datasets can be found in Table A.1.

168

TABLE A.1

STATISTICS OF LINK PREDICTION DATASETS.

Dataset #Nodes #Edges Avg. node deg. Density Attr. Dimension

Cora 2708 10556 3.90 0.2880% 1433

Citeseer 3327 9104 2.74 0.1645% 3703

Pubmed 19717 88648 4.50 0.0456% 500

USAir 332 4252 12.81 7.7385% -

NS 1589 5484 3.45 0.4347% -

PB 1222 33428 27.36 4.4808% -

Yeast 2375 23386 9.85 0.8295% -

C.ele 297 4296 14.46 9.7734% -

Power 4941 13188 2.67 0.1081% -

Router 5022 12516 2.49 0.0993% -

E.coli 1805 29320 16.24 1.8009% -

A.5 Results measured by Hits@20 and statistical significance of results

We adopt another widely used metrics in the link prediction task [62], Hits@20,

to evaluate the model performance with and without FakeEdge. The results are

shown in Table A.2. FakeEdge can boost all the models predictive power on different

datasets.

Note that the AUC scores on several datasets are almost saturated in Table 2.1.

To further verify the statistical significance of the improvement, a two-sided t-test is

conducted with the null hypothesis that the augmented Edge Att and the Original

representation learning would reach at the identical average scores. The p-values of

different methods can be found in Table A.3. Recall that the p-value smaller than

0.05 is considered as statistically significant. GAE-like methods obtain significant

improvement on almost all of the datasets, except GCN on C.ele. SEAL shows

169

TABLE A.2

COMPARISON WITH AND WITHOUT FAKEEDGE (HITS@20).

Models FakeEdge Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

GCN

Original 65.35±3.64 61.71±2.60 48.97±1.92 87.69±3.92 92.77±1.72 41.60±2.52 85.26±1.90 65.33±7.55 39.64±5.47 39.41±2.38 82.21±2.02

Edge Plus 68.31±2.89 65.80±3.28 55.70±3.07 89.34±4.09 93.28±1.69 43.98±6.25 87.19±2.13 66.68±5.25 46.92±3.78 72.03±2.85 86.03±1.40

Edge Minus 67.97±2.62 66.13±3.30 54.29±2.66 90.57±3.30 93.61±1.68 43.92±5.82 86.66±2.18 66.07±6.14 47.97±2.58 72.34±2.58 85.68±1.84

Edge Mean 67.76±3.02 66.11±2.48 54.55±2.88 89.48±3.52 92.77±1.99 44.64±6.93 86.64±2.03 65.28±6.33 47.54±2.95 72.26±2.68 85.62±1.71

Edge Att 68.43±3.72 67.65±4.11 55.55±2.70 90.80±4.50 92.88±2.27 44.80±6.60 87.83±0.92 65.93±11.06 48.50±2.20 70.96±2.85 86.56±1.69

SAGE

Original 61.67±3.68 61.10±1.54 45.29±3.99 89.20±2.80 91.93±2.74 39.51±4.44 84.11±1.47 58.55±7.17 42.97±5.34 30.02±2.75 75.30±2.77

Edge Plus 68.58±2.77 65.47±3.58 55.23±2.81 92.59±3.71 93.83±2.54 49.10±5.38 89.36±0.72 69.72±6.02 49.70±2.57 74.90±3.73 88.16±1.29

Edge Minus 66.26±2.54 62.97±3.50 53.43±3.52 91.32±3.42 93.54±1.96 48.72±4.90 88.27±1.00 69.81±5.34 47.63±1.87 56.67±7.20 87.89±1.59

Edge Mean 66.74±2.71 65.96±2.62 55.21±2.84 91.51±3.49 93.25±2.88 48.89±6.14 89.30±0.72 69.21±7.17 47.54±3.52 73.89±3.50 88.05±1.62

Edge Att 68.80±2.65 66.62±3.67 55.18±2.99 92.92±3.11 94.09±1.60 48.53±5.15 89.10±1.17 69.30±7.53 47.06±2.21 73.60±4.68 87.63±1.66

GIN

Original 55.71±4.38 51.71±4.31 40.14±3.98 86.08±3.14 90.51±3.45 38.79±5.32 79.57±1.74 54.95±5.91 41.56±1.47 55.47±4.37 77.37±2.84

Edge Plus 64.42±2.67 63.56±2.92 49.75±4.50 88.68±4.10 94.85±1.90 46.17±6.12 87.58±2.22 64.49±6.52 48.59±3.33 70.67±3.58 84.13±2.12

Edge Minus 63.17±2.96 63.65±4.63 50.37±4.01 89.81±1.80 94.53±2.09 45.93±6.09 88.37±2.00 67.06±11.03 47.56±1.88 71.10±1.90 83.23±2.62

Edge Mean 61.46±4.64 63.74±4.20 46.97±6.49 89.86±2.62 93.98±2.88 43.48±7.74 88.16±2.11 66.73±6.79 47.66±2.91 71.09±2.68 82.48±1.99

Edge Att 63.26±3.33 60.64±4.29 49.71±4.40 88.87±4.71 94.49±1.51 44.94±5.37 87.92±1.45 65.93±8.55 48.19±2.70 70.03±3.05 84.38±2.54

PLNLP

Original 58.77±2.59 57.21±3.91 40.03±3.46 88.87±2.75 93.76±1.65 38.90±4.38 81.17±3.54 66.36±5.65 43.52±6.47 34.61±11.29 65.68±1.56

Edge Plus 66.79±2.77 67.69±4.13 44.44±14.29 95.19±1.60 95.84±1.09 45.18±4.87 88.04±2.42 71.21±8.04 52.37±3.95 75.01±1.83 84.73±1.70

Edge Minus 67.40±3.53 62.84±2.88 47.80±11.11 94.10±2.42 95.22±1.60 45.40±6.29 87.94±1.64 69.91±6.80 52.19±4.23 68.24±4.01 83.59±1.56

Edge Mean 68.61±3.40 64.81±3.57 51.92±13.30 95.24±2.09 95.95±0.78 45.37±5.07 88.08±2.30 71.26±8.05 51.97±3.41 74.42±2.33 84.78±1.82

Edge Att 67.82±3.58 64.37±3.73 48.47±12.01 95.38±2.02 95.62±0.81 45.28±5.11 88.57±1.80 70.65±8.11 51.79±4.07 74.99±1.92 85.10±1.88

SEAL

Original 60.95±8.00 61.56±2.12 48.80±3.33 91.27±2.53 91.72±2.01 43.44±6.82 85.33±1.76 64.21±5.86 39.30±3.79 59.47±6.66 84.15±2.16

Edge Plus 60.51±7.70 65.12±2.18 50.90±3.96 90.85±4.12 93.61±1.87 46.77±4.80 86.66±1.59 65.47±7.68 45.90±2.85 70.06±3.57 85.76±2.04

Edge Minus 60.74±6.60 65.14±2.93 51.23±3.82 90.66±3.49 92.19±2.03 47.21±4.73 86.49±2.08 63.64±6.93 46.42±3.42 70.43±4.40 85.50±2.06

Edge Mean 62.94±5.78 64.99±4.36 51.83±3.66 91.84±2.93 92.92±2.12 46.02±4.22 86.25±2.17 65.93±6.87 46.57±3.22 70.08±3.85 85.85±1.81

Edge Att 62.03±4.95 63.52±4.39 48.42±5.69 91.42±3.31 94.64±1.49 44.73±5.29 86.83±1.63 65.93±4.74 47.91±3.45 67.46±3.49 86.02±1.58

WalkPool

Original 69.98±3.37 64.22±2.84 57.30±2.56 95.09±2.78 96.02±1.64 47.74±5.81 88.24±1.33 78.55±5.83 43.58±4.40 56.21±13.92 83.41±1.72

Edge Plus 69.13±2.31 64.51±2.25 59.23±3.09 95.00±3.09 96.06±1.65 46.18±5.40 89.79±0.70 78.36±5.30 56.27±4.17 77.65±2.83 86.44±1.52

Edge Minus 69.34±2.45 64.26±1.93 59.44±3.10 95.14±2.93 95.99±1.67 46.79±4.88 89.57±0.85 77.90±4.49 55.72±3.63 77.62±2.64 87.24±0.77

Edge Mean 70.27±2.96 62.84±4.79 59.85±3.84 95.24±2.45 96.17±1.63 46.27±5.00 89.58±0.91 77.94±4.55 56.18±3.74 76.88±2.76 86.89±0.84

Edge Att 69.60±4.11 64.35±3.64 59.63±3.28 95.61±2.53 96.06±1.62 46.77±5.36 89.84±0.71 77.94±4.89 56.46±3.55 76.90±2.82 87.02±1.64

170

TABLE A.3

p-VALUES BY COMPARING AUC SCORES WITH ORIGINAL AND

EDGE ATT.

Models Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

GCN 3.50 · 10−09 6.92 · 10−12 1.52 · 10−09 1.10 · 10−05 9.89 · 10−04 1.21 · 10−09 4.95 · 10−13 2.76 · 10−01 1.55 · 10−05 2.62 · 10−13 2.44 · 10−14

SAGE 1.32 · 10−08 2.04 · 10−06 3.48 · 10−14 2.78 · 10−02 2.33 · 10−02 4.13 · 10−06 4.87 · 10−08 1.23 · 10−03 6.12 · 10−10 4.40 · 10−12 3.54 · 10−13

GIN 4.86 · 10−10 6.09 · 10−11 1.46 · 10−12 1.27 · 10−03 1.29 · 10−05 2.47 · 10−10 5.34 · 10−11 3.84 · 10−04 5.10 · 10−09 3.11 · 10−16 3.04 · 10−12

PLNLP 1.47 · 10−10 5.30 · 10−07 1.22 · 10−06 1.66 · 10−07 1.70 · 10−02 3.40 · 10−08 7.69 · 10−06 2.46 · 10−03 7.84 · 10−06 2.68 · 10−13 5.27 · 10−11

SEAL 2.59 · 10−01 1.72 · 10−02 6.45 · 10−05 4.82 · 10−01 1.15 · 10−02 5.20 · 10−01 5.91 · 10−04 4.12 · 10−01 3.78 · 10−06 3.91 · 10−06 5.67 · 10−04

WalkPool 9.52 · 10−01 4.96 · 10−01 2.83 · 10−07 4.77 · 10−01 8.91 · 10−01 1.84 · 10−05 1.07 · 10−04 8.74 · 10−01 4.15 · 10−07 5.89 · 10−04 1.83 · 10−10

Significant differences are highlighted in bold.

significant improvement with Edge Att on 7 out of 11 datasets. For WalkPool, more

than half of the datasets are significantly better.

A.6 FakeEdge with extremely sparse graphs

In real applications, the size of testing set often outnumbers the training set.

When it happens to a link prediction task, the graph will become more sparse because

of the huge number of unseen links. We are interested to see how FakeEdge can handle

situations where the ratio of training set is low and there exists a lot of “true” links

missing in the training graph.

We reset the train/test split as 20% for training, 30% for validation and 50% for

testing and reevaluate the model performance. The results can be found in Table A.4.

As shown in the table, FakeEdge can still consistently improve the model performance

under such an extreme setting. It shows that the dataset shift for link prediction is

a common issue and FakeEdge has the strength to alleviate it in various settings.

However, we still observe a significant performance drop when compared to the

85/5/10 evaluation setting. This degradation may be caused by a more fundamental

dataset shift problem of link prediction: the nodes in a graph are not sampled inde-

171

pendently. Existing link prediction models often assume that the likelihood of form-

ing a link relies on its local neighborhood. Nevertheless, an intentionally-sparsified

graph can contain a lot of missing links from the testing set, leading to corrupted

local neighborhoods of links which cannot reflect the real environments surrounding.

FakeEdge does not have the potential to alleviate such a dataset shift. We leave this

as a future work.

TABLE A.4

MODEL PERFORMANCE WITH ONLY 20% TRAINING DATA (AUC).

Models Fake Edge Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

GCN

Original 55.35±1.07 56.02±0.94 57.09±1.46 80.44±1.44 61.14±1.29 88.54±0.34 81.09±0.53 66.67±2.33 49.18±0.53 62.98±8.98 81.79±0.76

Edge Plus 64.19±0.60 62.20±1.07 85.65±0.26 88.34±0.66 62.97±1.56 92.40±0.26 85.56±0.26 71.21±1.26 52.77±1.78 77.86±0.98 91.68±0.27

Edge Minus 62.89±0.82 61.47±0.87 85.48±0.28 86.46±1.53 62.17±1.28 92.63±0.26 85.44±0.64 70.15±1.14 52.66±1.26 77.68±0.81 91.86±0.22

Edge Mean 63.36±0.75 61.76±1.00 85.64±0.29 87.47±1.18 62.91±1.29 92.52±0.25 84.99±0.47 70.84±1.36 51.96±1.30 77.96±0.88 91.81±0.20

Edge Att 63.30±1.17 61.89±0.90 85.55±0.29 88.19±1.26 61.84±1.77 92.57±0.24 85.51±0.40 70.28±1.42 52.38±1.53 77.44±0.64 91.60±0.33

SAGE

Original 51.47±1.68 54.02±1.63 57.00±7.69 84.38±1.14 62.54±1.48 89.48±0.46 77.99±1.05 66.06±2.01 51.73±0.80 61.14±8.58 85.01±0.67

Edge Plus 65.01±0.61 63.10±0.63 86.90±0.25 89.17±0.80 65.19±1.75 92.71±0.27 86.74±0.38 72.10±1.81 53.99±0.70 78.72±0.65 91.92±0.15

Edge Minus 62.71±0.79 58.70±1.00 85.51±0.21 87.24±0.83 63.64±1.52 91.95±0.30 85.61±0.49 70.45±1.98 52.28±0.68 70.66±0.95 89.56±0.32

Edge Mean 64.44±0.82 62.63±0.63 86.54±0.13 88.95±0.72 64.33±1.48 92.67±0.26 86.60±0.30 71.78±1.80 52.38±0.70 78.54±0.70 91.86±0.19

Edge Att 65.31±0.63 62.81±0.94 86.62±0.24 88.73±0.62 63.90±1.77 92.70±0.22 86.64±0.34 71.40±1.54 53.07±1.32 79.08±0.61 92.14±0.20

GIN

Original 61.93±0.93 61.27±0.95 74.32±1.30 87.39±0.71 62.70±0.81 89.52±0.29 81.70±0.95 68.25±1.65 52.02±1.20 76.50±0.95 90.07±0.51

Edge Plus 63.30±0.84 62.64±1.17 86.53±1.08 87.63±0.78 65.28±1.44 91.69±0.35 86.30±0.51 69.82±1.47 53.55±0.92 78.08±0.98 91.44±0.35

Edge Minus 62.66±1.08 62.11±1.17 85.12±0.29 87.31±0.85 65.01±1.91 91.75±0.33 86.25±0.58 69.72±1.27 53.59±0.92 78.09±0.93 91.39±0.22

Edge Mean 62.82±1.33 62.40±1.10 85.67±0.66 87.46±0.75 65.02±1.65 91.72±0.31 86.29±0.53 69.94±1.53 53.54±0.84 78.09±1.08 91.36±0.26

Edge Att 63.25±0.70 62.07±0.65 85.37±0.64 87.75±0.92 65.54±1.23 91.62±0.11 86.31±0.44 71.47±1.39 54.05±0.85 78.79±0.66 91.49±0.17

PLNLP

Original 63.08±1.01 65.23±1.41 73.97±1.58 84.14±1.94 63.06±1.30 88.34±1.22 81.15±1.52 68.33±1.70 52.27±0.83 68.90±1.08 84.80±1.72

Edge Plus 70.81±0.70 72.30±1.59 94.57±0.15 89.47±0.87 65.61±0.80 92.66±0.22 86.80±0.37 73.35±1.44 54.19±0.74 79.07±0.60 92.00±0.29

Edge Minus 67.21±1.56 68.79±1.12 93.77±0.13 87.49±1.29 64.13±1.79 92.22±0.24 85.78±0.46 71.22±1.60 52.92±0.70 75.97±0.60 91.08±0.23

Edge Mean 72.01±0.96 72.79±1.72 94.23±0.22 89.58±0.89 65.33±0.68 92.63±0.22 86.80±0.43 73.07±1.39 54.13±0.50 80.38±1.10 91.93±0.29

Edge Att 71.62±1.28 72.72±0.90 94.27±0.22 89.49±0.81 65.58±0.84 92.63±0.21 86.80±0.40 73.08±1.41 54.06±0.54 80.37±0.71 91.98±0.26

SEAL

Original 58.94±1.72 59.12±0.76 78.00±1.94 87.27±1.30 62.59±1.06 91.32±0.30 83.13±0.83 69.25±1.30 51.02±0.83 71.88±1.43 90.89±0.41

Edge Plus 62.62±1.16 62.38±0.91 85.31±0.36 87.62±0.84 63.31±1.41 91.67±0.18 85.74±0.62 69.29±0.97 52.86±0.62 77.79±0.66 91.36±0.43

Edge Minus 60.75±1.88 61.58±0.76 86.03±1.31 87.54±1.23 63.84±0.89 91.64±0.21 85.43±0.63 69.16±1.01 52.77±0.86 78.06±0.80 91.31±0.45

Edge Mean 61.55±2.03 62.19±0.56 85.50±0.48 87.52±1.00 63.27±1.18 91.68±0.21 85.64±0.56 69.30±1.22 52.40±0.61 77.57±0.90 91.41±0.43

Edge Att 61.77±1.89 62.15±0.53 85.09±0.53 87.76±0.73 64.01±1.69 91.91±0.36 85.56±0.54 68.97±1.24 53.11±0.95 77.82±0.54 91.01±0.32

WalkPool

Original 64.05±0.74 63.51±1.35 86.85±0.83 94.54±0.87 90.70±0.78 93.45±0.36 94.26±0.63 87.18±0.79 65.89±0.76 83.63±4.29 91.95±1.48

Edge Plus 64.15±0.87 63.49±1.08 91.73±0.38 94.55±0.92 90.57±0.86 94.39±0.14 94.81±0.24 87.22±0.77 66.74±0.54 87.53±0.40 95.30±0.16

Edge Minus 64.21±0.97 63.53±1.04 91.81±0.87 94.65±0.89 90.69±0.86 94.39±0.14 94.83±0.22 87.20±0.76 66.77±0.65 87.60±0.38 95.30±0.15

Edge Mean 64.13±0.89 63.47±1.59 91.46±0.86 94.65±0.96 90.71±0.86 94.40±0.13 94.83±0.21 87.13±0.77 66.79±0.61 87.57±0.39 95.32±0.16

Edge Att 63.90±1.21 63.62±1.39 90.97±1.62 94.71±0.80 90.69±0.81 94.40±0.14 94.85±0.24 87.17±0.82 66.78±0.54 87.66±0.29 95.32±0.13

172

A.7 Concatenation as another valid Edge Invariant subgraph embedding

Edge Concat To fuse the feature from Edge Plus and Edge Minus, another simple

and intuitive way is to concatenate two embedding into one representation. Namely,

hconcat = [hplus;hminus], where [·; ·] is the concatenation operation. hconcat is also an

Edge Invariant subgraph embedding. In Table A.5, we observe that Edge Concat has

the similar performance improvement like other FakeEdge methods on all different

backbone models.

TABLE A.5

COMPARISON FOR CONCATENATION OPERATION (AUC)

Models Fake Edge Cora Citeseer Pubmed USAir NS PB Yeast C.ele Power Router E.coli

GCN

Original 84.92±1.95 77.05±2.18 81.58±4.62 94.07±1.50 96.92±0.73 93.17±0.45 93.76±0.65 88.78±1.85 76.32±4.65 60.72±5.88 95.35±0.36

Edge Att 92.06±0.85 88.96±1.05 97.96±0.12 97.20±0.69 97.96±0.39 95.46±0.45 97.65±0.17 89.76±2.06 85.26±1.32 95.90±0.47 98.04±0.16

Edge Concat 92.63±1.00 89.88±1.00 97.96±0.11 97.27±0.95 98.07±0.78 95.39±0.44 97.55±0.46 89.78±1.59 85.71±0.75 96.19±0.59 98.06±0.23

SAGE

Original 89.12±0.90 87.76±0.97 94.95±0.44 96.57±0.57 98.11±0.48 94.12±0.45 97.11±0.31 87.62±1.63 79.35±1.66 88.37±1.46 95.70±0.44

Edge Att 93.31±1.02 91.01±1.14 98.01±0.13 97.40±0.94 98.70±0.59 95.49±0.49 98.22±0.24 90.64±1.88 86.46±0.91 96.31±0.59 98.43±0.13

Edge Concat 93.03±0.57 91.14±1.46 98.08±0.07 97.54±0.70 98.59±0.26 95.66±0.39 98.04±0.37 91.14±1.19 86.46±1.04 96.19±0.54 98.40±0.22

GIN

Original 82.70±1.93 77.85±2.64 91.32±1.13 94.89±0.89 96.05±1.10 92.95±0.51 94.50±0.65 85.23±2.56 73.29±3.88 84.29±1.20 94.34±0.57

Edge Att 90.76±0.88 89.55±0.61 97.50±0.15 96.34±0.82 98.35±0.54 95.29±0.29 97.66±0.33 89.39±1.61 86.21±0.67 95.78±0.52 97.74±0.33

Edge Concat 90.90±0.92 89.94±0.89 97.48±0.16 96.17±0.64 98.41±0.73 95.45±0.39 97.71±0.38 88.81±1.41 86.77±0.99 95.72±0.47 97.72±0.18

PLNLP

Original 82.37±1.70 82.93±1.73 87.36±4.90 95.37±0.87 97.86±0.93 92.99±0.71 95.09±1.47 88.31±2.21 81.59±4.31 86.41±1.63 90.63±1.68

Edge Att 91.22±1.34 88.75±1.70 98.41±0.17 98.13±0.61 98.70±0.40 95.32±0.38 98.06±0.37 91.72±2.12 90.08±0.54 96.40±0.40 98.01±0.18

Edge Concat 93.01±1.16 91.19±1.52 98.45±0.12 97.86±0.37 98.81±0.33 95.18±0.24 98.04±0.21 91.79±1.79 89.16±1.01 96.31±0.36 98.13±0.18

SEAL

Original 90.13±1.94 87.59±1.57 95.79±0.78 97.26±0.58 97.44±1.07 95.06±0.46 96.91±0.45 88.75±1.90 78.14±3.14 92.35±1.21 97.33±0.28

Edge Att 91.08±1.67 89.35±1.43 97.26±0.45 97.04±0.79 98.52±0.57 95.19±0.43 97.70±0.40 89.37±1.40 85.24±1.39 95.14±0.62 97.90±0.33

Edge Concat 90.22±1.60 89.93±1.31 97.40±0.24 96.83±1.01 98.23±0.49 95.29±0.43 97.68±0.34 88.99±1.13 85.60±1.03 95.76±0.74 97.72±0.25

WalkPool

Original 92.00±0.79 89.64±1.01 97.70±0.19 97.83±0.97 99.00±0.45 94.53±0.44 96.81±0.92 93.71±1.11 82.43±3.57 87.46±7.45 95.00±0.90

Edge Att 91.98±0.80 89.36±0.74 98.37±0.19 98.12±0.81 99.03±0.50 95.47±0.27 98.28±0.24 93.63±1.11 91.25±0.60 97.27±0.27 98.70±0.14

Edge Concat 91.77±1.06 89.79±0.87 98.48±0.09 98.07±0.86 99.05±0.44 95.46±0.35 98.30±0.25 93.82±1.09 91.29±0.77 97.31±0.27 98.70±0.17

173

A.8 Dataset shift vs expressiveness: which contributes more with FakeEdge?

In Section 2.5.3, we discussed how FakeEdge can enhance the expressive power

of GNN-based models on non-isomorphic focal node pairs. Meanwhile, we have wit-

nessed the boost of model performance brought by FakeEdge in the experiments.

One natural question to ask is whether resolving the dataset shift issue or lifting up

expressiveness is the major contributor to make the model perform better.

To answer the question, we first revisit the condition of achieving greater expres-

siveness. FakeEdge will lift up the expressive power when there exists two nodes

being isomorphic in the graph, where we can construct a pair of non-isomorphic focal

node pairs which GNNs cannot distinguish. Therefore, how often such isomorphic

nodes exist in a graph will determine how much improvement FakeEdge can make by

bringing greater expressiveness. Even though isomorphic nodes are common in spe-

cific types of graphs like regular graphs, it can be rare in the real world datasets [154].

Thus, we tend to conclude that the effect of solving dataset shift issue by FakeEdge

contributes more to the performance improvement rather than greater expressive

power. But fully answering the question needs a further rigorous study.

A.9 Limitation

FakeEdge can align the embedding of isomorphic subgraphs in training and testing

sets. However, it can pose a limitation that hinders one aspect of the GNN-based

model’s expressive power. Figure 2.1 gives an example where subgraphs are from

training and testing phases, respectively. Now consider that those two subgraphs are

both from training set (c = train). Still, the top subgraph has edge observed at focal

node pair (y = 1), while the other does not (y = 0). With FakeEdge, two subgraphs

will be modified to be isomorphic, yielding the same representation. However, they

are non-isomorphic before the modification. To the best of our knowledge, no existing

174

method can simultaneously achieve the most expressive power and get rid of dataset

shift issue, because the edge at the focal node pair in the testing set can never be

observed under a practical problem setting.

175

APPENDIX B

CORE: DATA AUGMENTATION FOR LINK PREDICTION VIA

INFORMATION BOTTLENECK

B.1 Related works

Data augmentation. The efficacy of data augmentation strategies in enhancing

model generalization is well-documented across various domains. Traditional DA

techniques, such as oversampling, undersampling, and interpolation methods [24],

have proven to be instrumental in mitigating issues related to learning from imbal-

anced datasets. In recent years, DA has found extensive application in computer

vision and natural language processing. Within the realm of computer vision, tech-

niques such as horizontal flipping, random erasing [189], Hide-and-Seek [135], and

Cutout [35] have demonstrated their ability to bolster model performance. On the

other hand, in natural language processing, DA is often achieved through lexical

substitution strategies, where words are replaced with their semantically equivalent

counterparts [184]. UDA [166] introduces a novel approach that leverages TF-IDF

metrics for keyword feature augmentation in documents.

Graph data augmentation. Graph-structured data, with its heterogeneous in-

formation modalities and complex properties, presents a more intricate landscape for

DA compared to conventional image or text data. Typically, graph data augmenta-

tion can be bifurcated into two primary approaches: perturbation of graph structure

and enhancement of node attributes.

176

In the realm of semi-supervised node classification, several innovative techniques

have been proposed. Drop Edge [127], for instance, introduces random edge dropping

to mitigate the oversmoothing problem prevalent in GNNs. Similarly, SDRF [145]

leverages graph structure rewiring to address the over-squashing issue in GNNs.

NodeAug [156] proposes a more holistic approach by simultaneously augmenting both

the graph structure (via edge addition/deletion) and node attributes (via feature re-

placement).

As for the graph classification task, AD-GCL [140] pioneers an adversarial aug-

mentation technique to boost the training of graph contrastive learning. Concur-

rently, JOAO [174] and GraphAug [94] automates the selection of augmentations

from a predefined pool, incorporating both edge perturbation and node attribute

masking.

However, the domain of link prediction has seen relatively limited exploration

of DA. Notable exceptions include Distance Encoding [90] and Node labeling [182],

which enhance GNNs’ expressiveness by infusing distance information. Moreover,

Hwang et al. [67] proposes to improve both model expressiveness and node impact

by incorporating a virtual node as a message-passing hub for link prediction.

Information bottleneck principle. The Information Bottleneck (IB) principle

has been increasingly incorporated into deep learning models to enhance learning

robustness. DeepVIB [6], for instance, fistly introduces the application of the IB

principle in this domain. To overcome the intractable computation posed by the

mutual information term in IB, DeepVIB devises a variational approximation akin to

the approach used in Variational Autoencoders (VAEs) [79]. The principle of IB has

also been leveraged within the realm of graph representation learning. GIB [163] was

among the first to integrate IB into graph learning, aiming to protect GNNs from

adversarial attacks. VIB-GSL [138] expanded upon this by applying the IB princi-

177

ple to graph structure learning, demonstrating its robustness in graph classification

tasks. GSAT [103], which is the most related to our work, employs IB to extract the

most rationale components from graphs for interpretation purposes. Similarly, IB-

subgraph [175] uses IB in conjunction with a bi-level optimization process to identify

the most representative subgraph components.

B.1.1 Comparison to GSAT

Scope & Objective. While GSAT [103] has significantly influenced our research,

our study introduces a novel graph DAmethod designed specifically for link prediction

tasks, distinguishing itself from GSAT’s focus on graph classification interpretability.

Strategic Design. Unlike the direct application of GIB/GSAT to link prediction,

we strategically designed CORE’s components:

• Isolated DA Design: GSAT when directly applied to the link prediction task
resulted in conflicts between optimal DAs for varying target links. We address
this by adopting a subgraph-based approach for isolating DA effects per target
link. Figure 3.4 in Section 3.5.3 showcases how the learned edge masking differs
for various downstream target links. The frequent occurrence of larger standard
deviations of edge maskings of the same edge for different target links implies
substantial disagreement on the optimal DAs. This verifies the necessity of our
subgraph-based approach for isolating DA effects per target link.

• Complete before Reduce: Recognizing that traditional IB-based methods
often overlook data instance information recovery prior to compression, we
introduced Complete stage. By recovering missing data, the complete stage
can attempt to fulfill the critical assumption (2) in Theorem 3 so that the
final DA is predictive and concise. The performance comparison in Table 3.1
necessitates the need for the Complete stage.

Furthermore, we introduced several improvements to achieve better performance and

stability (See the ablation study in Appendix B.3.3):

• Attention Mechanism: When pruning the noisy edges, GIB/GSAT assumes
that knowing the edge representation itself is sufficient to determine whether it
is a critical substructure. However, in our link prediction task, one edge may

178

be critical for one target link but not for another. We propose using target
link representation to discern the criticality of an edge for the said link with
attention mechanism, which contrasts with GSAT’s approach. (Equation 3.10)

• Edge Label: To differentiate original edges from those introduced in the com-
plete stage, we have adopted a labeling strategy based on their scores to discern
their relative importance. (Appendix B.2.2)

• Unbiased KL Loss: In GSAT implementation, the KL loss term is not an
unbiased empirical estimator. In a mini-batch B during training, the KL loss

term in GSAT is minimized through EG[KL] ≈
∑

G∈B KL∑
G∈B |EG| . That is, their mini-

mization treats each edge in the batch of graphs as a data instance. However,

the unbiasd estimator should be
∑

G∈B KL

|B| ,, which average across the subgraphs.
The KL loss estimator in GSAT is not that troublesome because the number
of edges in their benchmark graphs is similar. However, the number of edges
in the subgraphs of the target link varies a lot. The performance comparison
in the ablation study necessitates the unbiased KL loss estimator.

Distinct Utility.

• Transferability of Graph Structures: Our method goes beyond previous
IB-based graph ML approaches by verifying that our refined graph structures
can serve as inputs to other link prediction models like CN, AA or RA. (See
Section 4.2)

• Robustness to Adversarial Attack: Our method exhibits robustness to
adversarial perturbations targeted at link prediction tasks, further validating
the capability of our method to capture critical substructures. (See Section 4.2)

In essence, while GSAT inspired our work, our contributions are substantial,

addressing nuances of the link prediction task and refining the DA approach for

better performance. The ablation studies (Appendix B.3.3) suggest that applying IB

upon link prediction task is a non-trivial work. It requires a dedicated design to suit

the unique challenge of link prediction. These distinctions highlight CORE’s value

and uniqueness in the graph learning domain.

179

B.2 Implementation details

B.2.1 Marginal distribution

We discuss the marginal distribution term r(G±
(i,j)) in Equation 3.5. Since G̃(i,j)

is sampled based on G+
(i,j) through ω̃(u,v) ∼ Bern(γ), we can write r(G±

(i,j)) =∑
G+

(i,j)
P(ω̃|G+

(i,j))P(G
+
(i,j)). Because ω̃ is independent from the the inflated graph

G+
(i,j) given its size n±, r(G±

(i,j)) =
∑

n± P(ω̃|n±)P(n±) = P(n±)
∏

u,v P(ω̃(u,v)). Thus,

the KL-divergence term in Equation 3.6 can be written as:

KL(pϕ(G
±
(i,j)|G

+
(i,j))||r(G

±
(i,j))) =∑

(u,v)∈E+
(i,j)

p(u,v) log
p(u,v)
γ

+
(
1− p(u,v)

)
log

1− p(u,v)
1− γ

+ Constant, (B.1)

where p(u,v) = sigmoid(a(u,v)) and the constant term accounts for the terms of node

pairs (u, v) /∈ E+
(i,j) without any trainable parameters.

In practice, we further allow the constraint hyperparameter γ to be different for

the original edges in the inflated graph G+
(i,j) and those added in the Complete stage.

Namely, we have γori and γext such that:

KL(pϕ(G
±
(i,j)|G

+
(i,j))||r(G

±
(i,j))) =∑

(u,v)∈E+
(i,j)

∩E

p(u,v) log
p(u,v)
γori

+
(
1− p(u,v)

)
log

1− p(u,v)
1− γori

+
∑

(u,v)∈E+
(i,j)

∩Eext

p(u,v) log
p(u,v)
γext

+
(
1− p(u,v)

)
log

1− p(u,v)
1− γext

+ Constant. (B.2)

180

B.2.2 Awareness of edges scores from the Complete stage

During the Reduce stage, when obtaining the edge representation, h(u, v), we

enrich this representation by appending an additional encoding, h̃(u, v). This sup-

plementary encoding serves to inform the model about the edge’s origin — whether

it’s a component of the original graph or an edge added in the Complete stage. How-

ever, this encoding strategy does not provide insights into the relative importance of

the newly added edges.

To address this, we incorporate a ranking mechanism, assigning a rank label to

each added edge based on its relative importance. Specifically, we segregate the added

edges into ten equal-sized buckets, determined by their respective scores. Each edge

is then assigned a label corresponding to its bucket number. This method of score-

aware edge representation enables the model to make more informed use of the added

edges, and to discern the most informative edges from the others.

B.2.3 Augmentation during inference

During the training phase, CORE reduces the inflated graph by implementing

edge sampling. However, for the testing phase, we do not employ sampling to obtain

the augmented graph.

Given that the entire model can be conceptualized as a probabilistic model, the

inference stage requires us to compute the expectation of the random variables. As

such, for each edge (u, v), we use its expected value, p(u,v), as the edge weight during

the inference process.

B.2.4 Nodewise sampling

The implementation of CORE applies an attention mechanism on each edge (u, v)

to get a(u,v), which can consume a huge amount of GPU memory when operating on

large-scale graphs. As a compromised modification, we follow [103] to sample the node

181

in the inflated graph instead of the edges. More specifically, after we get the node

representation, we apply the attention to the node and the subgraph representation

to get the importance score au for each node. Then, each node is still sampled

through a Bernoulli distribution ωu ∼ Bern(sigmoid(au)). In the end, the edge mask

is obtained by ω(u,v) = ωu ∗ ωv.

B.2.5 Hyperparameter details

In the Complete stage of our experiments, we employ GCN and SAGE as link

predictors to inject potential missing edges into the four non-attributed graphs. This

choice is driven by the smaller sizes of these graphs. The parameter k, representing

the number of top-scored edges, is searched within the range [1000, 2000].

For the remaining four attributed graphs, we limit our search to heuristic link

predictors, namely CN, AA, and RA. The k parameter for these graphs is explored

within the range [16000, 32000].

In the Reduce stage, we conduct a hyperparameter search for both γ and β.

Specifically, we search for the parameters γori and γext within the set [0.8, 0.5, 0.2].

The parameter β is searched within the range [1, 0.1, 0.01].

B.2.6 Software and hardware details

Our implementation leverages the PyTorch Geometric library [50] and the

SEAL [178] framework. All experiments were conducted on a Linux system equipped

with an NVIDIA P100 GPU with 16GB of memory.

B.2.7 Time complexity

The time complexity of our method is primarily similar to that of SEAL. How-

ever, there are two additional computational requirements: (1) an extra node rep-

resentation encoding is needed for edge pruning; and (2) a probability score must

182

be assigned to each edge. Consequently, the overall computation complexity of our

method is O(t(dl+1F ′′ + dl+1F ′′2)), where t represents the number of target links, d

is the maximum node degree, l corresponds to the number of hops of the subgraph,

and F ′′ indicates the dimension of the representation.

B.3 Supplementary experiments

B.3.1 Baseline methods

CN [91]. Common Neighbor (CN) is a widely-used link predictor that posits a node

pair with more common neighbors is more likely to connect. The score is computed

as CN(i, j) = |Ni ∩Nj|.

AA [4]. Adamic-Adar (AA) extends the CN approach, emphasizing that common

neighbors with fewer connections are more important than those with many connec-

tions. The score is calculated as AA(i, j) =
∑

z∈Ni∩Nj

1
log |Nz | .

RA [191]. Resource Allocation (RA) modifies the weight decay of AA on common

neighbors. It computes the score as RA(i, j) =
∑

z∈Ni∩Nj

1
|Nz | .

GCN [82]. Graph Convolutional Networks (GCN) propose a graph convolution

operation using the first-degree neighbors. Owing to its computational efficiency and

high performance, GCN is a popular architecture for GNNs.

SAGE [59]. GraphSAGE (SAGE) proposes a scalable approach to applying GNNs

on large graphs. The encoder part of SAGE uses two distinct weights for the center

node representation and its surrounding neighbors.

GIN [167]. Graph Isomorphism Network (GIN) is a 1-WL expressive GNN widely

used for graph classification problems. In our experiment, we use the zero-one labeling

183

trick[182] in GIN to distinguish between the target node pair and the remaining nodes

in the target link’s local neighborhood.

SEAL[178]. SEAL is a state-of-the-art link prediction model. It uses GNNs and a

node labeling trick[182] to enhance expressiveness for link prediction. We found that

SEAL’s expected performance on the Collab dataset is approximately 5% higher

than initially reported.

CFLP [185]. CFLP introduces counterfactual links into the graph to enable causal

inference for link prediction. Despite its efficiency for smaller graphs, CFLP can

cause out-of-memory issues for larger graphs due to its preprocessing step to find

counterfactual node pairs.

Edge Proposal [134]. Edge Proposal augments the graph by adding potential

missing or future links to complement the graph for enhanced link prediction perfor-

mance.

Node Drop [120]. Node Drop, also known as DropGNN, randomly drops nodes

in the graph. This exposes the model to multiple views of the graph, enhancing its

expressiveness.

Edge Drop [127]. Edge Drop, also known as DropEdge in their work, introduces

a stochastic approach to edge removal as a regularization method to solve the over-

smoothing issue in GNNs.

B.3.2 Benchmark datasets

The following graph datasets were utilized in our experiments:

Non-attributed graph datasets:

184

1. USAir[10]: This dataset contains a representation of US airlines, encapsulating
the connectivity between different airports.

2. Yeast[150]: This dataset includes a protein-protein interaction network within
yeast cells, providing insights into the complex interplay of biological compo-
nents.

3. C.ele[158]: This dataset represents the neural network of the nematode
Caenorhabditis elegans, one of the most studied organisms in neuroscience.

4. Router[136]: This dataset encompasses Internet connectivity at the router-
level, providing a snapshot of the web’s underlying infrastructure.

Attributed graph datasets:

1. CS[131]: This dataset provides a snapshot of the collaboration network in the
computer science domain, highlighting co-authorship relationships.

2. Physics[131]: This dataset depicts a collaboration network within the field of
physics, offering insights into academic partnerships.

3. Computers[131]: This dataset presents a segment of the co-purchase network
on Amazon, reflecting purchasing behavior related to computer products.

4. Collab[163]: This dataset presents a large-scale collaboration network, show-
casing a wide array of interdisciplinary partnerships.

Comprehensive statistics for these datasets are detailed in Table B.1. Note that

when we perform the train test split, we ensure that the split is the same for all

different methods on each dataset.

B.3.3 More ablation study

We further conduct ablation studies on three unique components we specifically

design for link prediction tasks, to enhance the performance of our proposed methods.

The results are presented in Table B.3. As the results suggest, all three components

can boost the performance of the proposed DA method by varying degrees. For

instance, CORE with No Attention hampers the performance from 0.6 to 2.5 in

Hits@50. CORE with No Edge Label also drops the effectiveness of DAs by from 0.5

185

TABLE B.1

STATISTICS OF BENCHMARK DATASETS.

Dataset #Nodes #Edges Avg. node deg. Max. node deg. Density Attr. Dimension

C.ele 297 4296 14.46 134 9.7734% -

USAir 332 4252 12.81 139 7.7385% -

Yeast 2375 23386 9.85 118 0.8295% -

Router 5022 12516 2.49 106 0.0993% -

CS 18333 163788 8.93 136 0.0975% 6805

Physics 34493 495924 14.38 382 0.0834% 8415

Computers 13752 491722 35.76 2992 0.5201% 767

Collab 235868 2358104 10.00 671 0.0085% 128

to 3. The Biased KL Loss mostly hurts the performance of CORE on USAir and

Physics, which we assume that the degree distribution of these two datasets is more

skewed compared to others.

B.3.4 Parameter sensitivity

We also conducted an experiment to examine the sensitivity of the hyperparame-

ters in CORE. We focused on the Reduce stage only, as this is the core component of

our method. As per our hyperparameter search procedure, we evaluated the model

performance for β across [10, 5, 2, 1, 0.1, 0.01] and γ across [0.8, 0.5, 0.2]. The results

are depicted in Figure B.1. Our method consistently enhanced the model perfor-

mance across various hyperparameter settings. However, we also notice that the

performance of CORE will drop if we increase the graph compression term β or de-

crease the edge-preserving term γ. This is because sparsifying the graph too much

will result in the loss of critical information. Thus, balanced β and γ are crucial for

a robust CORE performance.

186

Figure B.1: CORE can improve LP performance in various hyperparameter settings
measured by Hits@50. Warmer colors indicate improved performance over the base-
line, whereas cooler colors signify the contrary.

187

TABLE B.2

RESULTS OF ADVERSARIAL ROBUSTNESS.

Methods
Yeast Router CS Physics Computers

No Adv 10% 30% 50% No Adv 10% 30% 50% No Adv 10% 30% 50% No Adv 10% 30% 50% No Adv 10% 30% 50%

GCN 80.33 76.69 68.30 57.96 35.16 28.55 20.75 15.86 60.69 64.24 57.49 45.28 69.16 68.85 60.16 46.76 32.70 30.16 24.33 20.07

SAGE 78.34 74.33 67.01 56.23 35.76 35.13 29.01 25.11 31.44 53.92 42.72 29.16 22.87 61.69 50.20 36.83 14.53 10.42 4.16 4.34

ELPH 78.92 76.74 69.05 65.58 59.50 57.07 52.83 47.65 67.84 65.92 60.28 50.09 69.60 64.67 58.83 47.51 33.64 34.30 29.35 23.23

NCNC 73.11 71.34 66.34 59.60 57.13 55.04 52.01 47.47 65.73 63.13 53.93 36.66 72.87 69.27 58.74 45.31 37.17 35.74 33.59 31.53

SEAL 82.50 78.24 69.24 62.84 60.35 51.84 48.75 44.02 65.23 60.31 58.97 42.38 71.83 64.28 59.84 44.17 35.80 33.84 31.84 28.84

CORE 84.67 81.94 74.70 68.96 65.64 59.20 56.58 51.02 69.67 66.87 61.18 50.49 74.73 70.78 62.58 50.37 37.88 36.28 34.66 31.85

Results of adversarial robustness for different models on the rest of datasets. The attack rates of 10%, 30%, and 50% represent the respective ratios of edges subjected to adversarial flips by CLGA [183].

TABLE B.3

ABLATION STUDY EVALUATED BY HITS@50.

Models C.ele USAir Router Yeast CS Physics Computers Collab

No Attention (Equation 3.10) 74.41±1.75 92.38±1.07 63.60±2.92 82.81±0.94 65.69±2.38 73.10±0.78 36.85±1.17 70.09±0.94

No Edge Label (Appendix B.2.2) 74.27±4.73 91.49±0.81 63.07±3.90 83.79±2.01 65.84±1.40 71.71±2.72 36.79±2.88 69.64±1.32

Biased KL Loss 75.14±2.18 90.66±3.69 64.80±2.25 81.91±1.70 64.22±3.38 69.32±5.05 37.31±2.47 69.61±1.13

CORE 76.34±1.65 92.69±0.75 65.47±2.44 84.22±1.58 68.15±0.78 74.73±2.12 37.88±1.10 70.64±0.51

The best-performing components are highlighted in bold, while the second-best performance is underlined.

Besides, the parameter γ acts as a regulatory mechanism that influences each

edge’s probability, nudging it towards the behavior of a random graph. A lower

γ tends to suppress non-essential edges in predictions. Based on our observations,

values between [0.5, 0.8] tend to be optimal. That being said, in our studies, the

balancing factor β has exhibited a more pronounced effect on model performance

than γ.

188

B.3.5 CORE with GCN and SAGE as backbones

We further investigate CORE with GCN and SAGE as backbones. The results

are presented in Table B.4. It shows that CORE can consistently improve model

performance with various GNNs as the backbones.

B.3.6 Complete stage only considering node pairs with common neighbors

When we score the potential node pairs to be added into the graph at Complete

stage, we only consider those with at least one common neighbor. While this seems

to limit the capability of recovering missing edges, it is actually an effective approach

with balanced computational efficiency. We empirically investigate the number of

node pairs in the testing set that have at least one common neighbor, presented in

Table B.5.

With the exception of the Router dataset, our benchmarks consistently indicate

that positive testing edges are inclined to have at least one common neighbor. There-

fore, our scoring process at the Complete stage encompasses the majority of the test-

ing edges. This observation underscores that our edge addition strategy aligns well

with the community-like nature observed in real-world datasets.

B.4 Variational bounds for the GIB objective in Equation 3.4 and Equation 3.5

The objective from Equation 3.3 is:

−I(G±
(i,j), Y) + βI(G±

(i,j), G
+
(i,j)).

Since those two terms are computationally intractable, we introduce two variational

bounds.

189

For I(G±
(i,j), Y), by the definition of mutual information:

I(G±
(i,j), Y) = E[log

p(Y |G±
(i,j))

p(Y)
]

= E[log
qθ(Y |G±

(i,j))

p(Y)
]

+ E[KL(p(Y |G±
(i,j))||qθ(Y |G±

(i,j)))]

≥ E[log
qθ(Y |G±

(i,j))

p(Y)
]

= E[log qθ(Y |G±
(i,j))] +H(Y),

where the KL-divergence term is nonnegative.

For the second term I(G±
(i,j), G

+
(i,j)), by definition:

I(G±
(i,j), G

+
(i,j)) = E[log

p(G±
(i,j)|G

+
(i,j))

p(G±
(i,j))

]

= E[log
pϕ(G

±
(i,j)|G

+
(i,j))

r(G±
(i,j))

]

− E[KL(p(G±
(i,j))||r(G

±
(i,j)))]

≤ E[KL(pϕ(G
±
(i,j)|G

+
(i,j))||r(G

±
(i,j))].

B.5 Proof for Theorem 3

We restate Theorem 3: Assume that: (1) The existence Y of a link (i, j) is solely

determined by its local neighborhood G∗
(i,j) in a way such that p(Y) = f(G∗

(i,j)), where

f is a deterministic invertible function; (2) The inflated graph contains sufficient

structures for prediction G∗
(i,j) ∈ Gsub(G

+
(i,j)). Then G±

(i,j) = G∗
(i,j) minimizes the

objective in Equation 3.3.

Proof. We can follow a similar derivation as in [103]. Consider the following steps:

190

− I(G±
(i,j);Y) + βI(G±

(i,j);G
+
(i,j))

(Start with the original objective Equation 3.3)

=− I(G+
(i,j), G

±
(i,j);Y) + I(G+

(i,j);Y |G±
(i,j)) + βI(G±

(i,j);G
+
(i,j))

(Expand the first term via chain rule of mutual information)

=− I(G+
(i,j), G

±
(i,j);Y) + (1− β)I(G+

(i,j);Y |G±
(i,j))

+ βI(G+
(i,j);G

±
(i,j), Y)

(Split the third term proportionally)

=− I(G+
(i,j);Y) + (1− β)I(G+

(i,j);Y |G±
(i,j)) + βI(G+

(i,j);G
±
(i,j), Y)

(Because G±
(i,j) is a subgraph of G+

(i,j))

=(β − 1)I(G+
(i,j);Y)− (β − 1)I(G+

(i,j);Y |G±
(i,j))

+ βI(G+
(i,j);G

±
(i,j)|Y),

(Split the last term and rearrange terms)

Since I(G+
(i,j);Y) does not involve trainable parameters, we focus on the last

two terms. If β ∈ [0, 1], the G±
(i,j) that minimizes Equation 3.3 also minimizes

−(β − 1)I(G+
(i,j);Y |G±

(i,j)) + βI(G+
(i,j);G

±
(i,j)|Y). Given that mutual information is

nonnegative, the lower bound of (1− β)I(G+
(i,j);Y |G±

(i,j)) + βI(G+
(i,j);G

±
(i,j)|Y) is 0.

Next, we show that G±
(i,j) = G∗

(i,j) can make Equation 3.3 reach its lower bound.

Since p(Y) = f(G∗
(i,j)), I(G

+
(i,j);Y |G∗

(i,j)) = 0. That is, there is no mutual information

between G+
(i,j) and Y when knowing G+

(i,j);Y . Similarly, because f is invertible, there

is no more mutual information between G+
(i,j) and G±

(i,j) when knowing Y , yielding

I(G+
(i,j);G

±
(i,j)|Y) = 0. Therefore, G±

(i,j) = G∗
(i,j) minimizes Equation 3.3.

191

B.6 Limitations

In this section, we address the limitations of our proposed method. Firstly, while

our model, CORE, delivers superior performance through the application of distinct

augmentations for each link prediction, this practice significantly increases the com-

putational burden. This is due to the requirement of independently calculating the

augmentation for each link. Attempts to implement a universal augmentation across

all links simultaneously resulted in a significant performance drop. Thus, future work

may explore efficient methods to balance computational overhead with performance

gains.

Secondly, our backbone model, SEAL, utilizes node labeling to determine prox-

imity to the target link for nodes within the neighborhood. Due to computational

constraints, this labeling process is performed on the CPU during preprocessing. De-

spite the capacity of the Reduce stage to alter the local structure of the target link,

the node labels remain unchanged post-graph pruning, potentially leading to infor-

mation leakage about each node’s position in the unaltered graph. Future research

could investigate methods to fully conceal this information, enabling link prediction

to be purely dependent on the pruned graph.

192

TABLE B.4

CORE WITH GCN AND SAGE AS BACKBONE MODELS.

Methods C.ele USAir Router Yeast

GCN as the backbone model

GCN 62.21±6.13 83.20±3.88 43.37±9.75 81.30±1.96

Complete Only 65.20±3.76 85.84±1.62 53.18±6.92 81.54±1.10

Reduce Only 65.52±2.95 86.42±4.03 47.26±8.37 82.82±0.96

CORE 68.79±2.48 87.96±1.03 55.35±4.53 82.82±0.96

SAGE as the backbone model

SAGE 70.91±1.05 80.38±7.18 56.71±2.59 84.70±2.01

Complete Only 71.59±2.15 83.60±2.98 58.60±2.79 84.91±1.33

Reduce Only 72.12±1.84 87.32±3.83 59.54±2.69 85.47±0.96

CORE 73.36±2.08 89.76±2.25 61.75±1.07 85.61±0.98

The best-performing methods are highlighted in bold, while the
second-best performance is underlined.

193

TABLE B.5

NUMBER OF NODE PAIRS WITH AT LEAST ONE COMMON

NEIGHBOR AS A POSITIVE INSTANCE IN THE TESTING SETS.

Dataset # Node pairs with CN # Node pairs Ratio

C.ele 344 429 80.17%

USAir 387 425 91.05%

Yeast 1700 2338 72.71%

Router 114 1251 9.11%

CS 11306 16378 69.03%

Physics 42061 49592 84.81%

Computers 45676 49172 92.89%

194

APPENDIX C

PURE MESSAGE PASSING CAN ESTIMATE COMMON NEIGHBOR FOR

LINK PREDICTION

C.1 Efficient inference at node-level complexity

In addition to its superior performance, MPLP stands out for its practical ad-

vantages in industrial applications due to its node-level inference complexity. This

design is akin to employing an MLP as the predictor. Our method facilitates of-

fline preprocessing, allowing for the caching of node signatures or representations.

Consequently, during online inference in a production setting, MPLP merely requires

fetching the relevant node signatures or representations and processing them through

an MLP. This approach significantly streamlines the online inference process, neces-

sitating only node-level space complexity and ensuring constant time complexity for

predictions. This efficiency in both space and time makes MPLP particularly suitable

for real-world applications where rapid, on-the-fly predictions are crucial.

C.2 Estimate triangular substructures

Not only does MPLP encapsulate the local structure of the target node pair by

assessing node counts based on varying shortest-path distances, but it also pioneers in

estimating the count of triangles linked to any of the nodes— an ability traditionally

deemed unattainable for GNNs [27]. In this section, we discuss a straightforward

implementation of the triangle estimation.

195

C.2.1 Method

Constructing the structural feature with DE can provably enhance the expressive-

ness of the link prediction model [90, 182]. However, there are still prominent cases

where labelling trick also fails to capture. Since labelling trick only considers the re-

lationship between the neighbors and the target node pair, it can sometimes miss the

subtleties of intra-neighbor relationships. For example, the nodes of DE(1, 1) in Fig-

ure 4.4 exhibit different local structures. Nevertheless, labelling trick like DE tends to

treat them equally, which makes the model overlook the triangle substructure shown

in the neighborhood. [27] discusses the challenge of counting such a substructure with

a pure message-passing framework. We next give an implementation of message-

passing to approximate triangle counts linked to a target node pair—equivalent in

complexity to conventional MPNNs.

For a triangle to form, two nodes must connect with each other and the target

node. Key to our methodology is recognizing the obligatory presence of length-1 and

length-2 walks to the target node. Thus, according to Theorem 6, our estimation can

formalize as:

#(△
u
) =

1

2
E
(
h̃(1)

u · h̃(2)
u

)
. (C.1)

Augmenting the structural features with triangle estimates gives rise to a more ex-

pressive structural feature set of MPLP.

C.2.2 Experiments

Following the experiment in Section 6.1 of [27], we conduct an experiment to

evaluate MPLP’s ability to count triangular substructures. Similarly, we generate

two synthetic graphs as the benchmarks: the Erdos-Renyi graphs and the random

regular graphs. We also present the performance of baseline models reported in [27].

196

Please refer to [27] for details about the experimental settings and baseline models.

The results are shown in Table C.1.

TABLE C.1

PERFORMANCE OF DIFFERENT GNNS ON LEARNING THE

COUNTS OF TRIANGLES.

Dataset Erdos-Renyi Random Regular

GCN 8.27E-1 2.05

GIN 1.25E-1 4.74E-1

SAGE 1.48E-1 5.21E-1

sGNN 1.13E-1 4.43E-1

2-IGN 9.85E-1 5.96E-1

PPGN 2.51E-7 3.71E-5

LRP-1-3 2.49E-4 3.83E-4

Deep LRP-1-3 4.77E-5 5.16E-6

MPLP 1.61E-4 3.70E-4

Performance of different GNNs on learning the counts of tri-
angles, measured by MSE divided by variance of the ground truth
counts. Shown here are the median (i.e., third-best) performances
of each model over five runs with different random seeds.

As the results show, the triangle estimation component of MPLP can estimate the

number of triangles in the graph with almost negligible error, similar to other more

expressive models. Moreover, MPLP achieves this with a much lower computational

cost, which is comparable to 1-WL GNNs like GCN, GIN, and SAGE. It demonstrates

MPLP’s advantage of better efficiency over more complex GNNs like 2-IGN and

PPGN.

197

Figure C.1: Representation of the target link (u, v) of MPLP after including the
triangular estimation component.

198

C.3 Experimental details

C.3.1 Benchmark datasets

TABLE C.2

STATISTICS OF BENCHMARK DATASETS.

Dataset #Nodes #Edges Avg. node deg. Std. node deg. Max. node deg. Density Attr. Dimension

C.ele 297 4296 14.46 12.97 134 9.7734% -

Yeast 2375 23386 9.85 15.50 118 0.8295% -

Power 4941 13188 2.67 1.79 19 0.1081% -

Router 5022 12516 2.49 5.29 106 0.0993% -

USAir 332 4252 12.81 20.13 139 7.7385% -

E.coli 1805 29320 16.24 48.38 1030 1.8009% -

NS 1589 5484 3.45 3.47 34 0.4347% -

PB 1222 33428 27.36 38.42 351 4.4808% -

CS 18333 163788 8.93 9.11 136 0.0975% 6805

Physics 34493 495924 14.38 15.57 382 0.0834% 8415

Computers 13752 491722 35.76 70.31 2992 0.5201% 767

Photo 7650 238162 31.13 47.28 1434 0.8140% 745

Collab 235868 2358104 10.00 18.98 671 0.0085% 128

PPA 576289 30326273 52.62 99.73 3241 0.0256% 58

Citation2 2927963 30561187 10.44 42.81 10000 0.0014% 128

The statistics of each benchmark dataset are shown in Table C.2. The benchmarks

without attributes are:

• USAir [10]: a graph of US airlines;

• NS [110]: a collaboration network of network science researchers;

199

• PB [3]: a graph of links between web pages on US political topics;

• Yeast [150]: a protein-protein interaction network in yeast;

• C.ele [158]: the neural network of Caenorhabditis elegans;

• Power [158]: the network of the western US’s electric grid;

• Router [136]: the Internet connection at the router-level;

• E.coli [180]: the reaction network of metabolites in Escherichia coli.

4 out of 7 benchmarks with node attributes come from [131], while Collab, PPA and

Citation2 are from Open Graph Benchmark [62]:

• CS: co-authorship graphs in the field of computer science, where nodes rep-
resent authors, edges represent that two authors collaborated on a paper, and
node features indicate the keywords for each author’s papers;

• Physics: co-authorship graphs in the field of physics with the same
node/edge/feature definition as of CS;

• Computers: a segment of the Amazon co-purchase graph for computer-related
equipment, where nodes represent goods, edges represent that two goods are
frequently purchased together together, and node features represent the product
reviews;

• Physics: a segment of the Amazon co-purchase graph for photo-related equip-
ment with the same node/edge/feature definition as of Computers;

• Collab: a large-scale collaboration network, showcasing a wide array of inter-
disciplinary partnerships.

• PPA: a large-scale protein-protein association network, representing the bio-
logical interaction between proteins.

• Citation2: a large-scale citation network, with papers as nodes and the
citaitons as edges.

Since OGB datasets have a fixed split, no train test split is needed for it. For

the other benchmarks, we randomly split the edges into 70-10-20 as train, validation,

and test sets. The validation and test sets are not observed in the graph during the

entire cycle of training and testing. They are only used for evaluation purposes. For

200

Collab, it is allowed to use the validation set in the graph when evaluating on the

test set.

We run the experiments 10 times on each dataset with different splits. For each

run, we cache the split edges and evaluate every model on the same split to ensure a

fair comparison. The average score and standard deviation are reported in Hits@100

for PPA, MMR for Citation2 and Hits@50 for the remaining datasets.

C.3.2 More details in baseline methods

In our experiments, we explore advanced variants of the baseline models ELPH

and NCNC. Specifically, for ELPH, [22] propose BUDDY, a link prediction method

that preprocesses node representations to achieve better efficiency but compromises

its expressiveness. NCNC [155] builds upon its predecessor, NCN, by first estimat-

ing the complete graph structure and then performing inference. In our experiments,

we select the most expressiveness variant to make sure it is a fair comparison between

different model architectures. Thus, we select ELPH over BUDDY, andNCNC over

NCN to establish robust baselines in our study. We conduct a thorough hyperpa-

rameter tuning for ELPH and NCNC to select the best-performing models on each

benchmark dataset. We follow the hyperparameter guideline of ELPH and NCNC

to search for the optimal structures. For ELPH, we run through hyperparameters

including dropout rates on different model components, learning rate, batch size, and

dimension of node embedding. For NCNC, we experiment on dropout rates on dif-

ferent model components, learning rates on different model components, batch size,

usage of jumping knowledge, type of encoders, and other model-specific terms like

alpha. For Neo-GNN and SEAL, due to their relatively inferior efficiency, we only

tune the common hyperparameters like learning rate, size of hidden dimensions.

201

C.3.3 Evaluation Details: Inference Time

In Figure 4.5, we assess the inference time across different models on the Collab

dataset for a single epoch of test links. Specifically, we clock the wall time taken

by models to score the complete test set. This encompasses preprocessing, message-

passing, and the actual prediction. For the SEAL model, we employ a dynamic

subgraph generator during the preprocessing phase, which dynamically computes the

subgraph. Meanwhile, for both ELPH and our proposed method, MPLP, we initially

propagate the node features and signatures just once at the onset of inference. These

are then cached for subsequent scoring sessions.

C.3.4 Software and hardware details

We implement MPLP in Pytorch Geometric framework [50]. We run our ex-

periments on a Linux system equipped with an NVIDIA A100 GPU with 80GB of

memory.

C.3.5 Time Complexity

The efficiency of MPLP stands out when it comes to link prediction inference.

Let’s denote t as the number of target links, d as the maximum node degree, r as the

number of hops to compute, and F as the dimension count of node signatures.

For preprocessing node signatures, MPLP involves two primary steps:

1. Initially, the algorithm computes all-pairs unweighted shortest paths across the
input graph to acquire the shortest-path neighborhood N s

v for each node. This
can be achieved using a BFS approach for each node, with a time complexity
of O(|V ||E|).

2. Following this, MPLP propagates the QO vectors through the shortest-path
neighborhood, which has a complexity ofO(tdrF), and then caches these vectors
in memory.

During online scoring, MPLP performs the inner product operation with a complexity

202

of O(tF), enabling the extraction of structural feature estimations.

However, during training, the graph’s structure might vary depending on the

batch of target links due to the shortcut removal operation. As such, MPLP proceeds

in three primary steps:

1. Firstly, the algorithm extracts the r-hop induced subgraph corresponding to
these t target links. In essence, we deploy a BFS starting at each node of
the target links to determine their receptive fields. This process, conceptually
similar to message-passing but in a reversed message flow, has a time complexity
of O(tdr). Note that, different from SEAL, we extract one r-hop subgraph
induced from a batch of target links.

2. To identify the shortest-path neighborhood N s
v , we simply apply sparse-sparse

matrix multiplications of the adjacency matrix to get the s-power adjacency
matrix, where s = 1, 2, . . . , r. Due to the sparsity, this takes O(|V |dr).

3. Finally, the algorithm engages in message-passing to propagate the QO vectors
along the shortest-path neighborhoods, with a complexity of O(tdrF), followed
by performing the inner product at O(tF).

Summing up, the overall time complexity for MPLP in the training phase stands

at O(tdr + |V |dr + tdrF).

For MPLP+, it does not require the preprocessing step for the shortest-path

neighborhood. Thus, the time complexity is the same as any standard message-

passing GNNs, O(tdrF).

C.3.6 Hyperparameters

We determine the optimal hyperparameters for our model through systematic

exploration. The setting with the best performance on the validation set is selected.

The chosen hyperparameters are as follows:

• Number of Hops (r): We set the maximum number of hops to r = 2. Empirical
evaluation suggests this provides an optimal trade-off between accuracy and
computational efficiency.

• Node Signature Dimension (F): The dimension of node signatures, F , is fixed
at 1024, except for Citation2 with 512. This configuration ensures that MPLP
is both efficient and accurate across all benchmark datasets.

203

• The minimum degree of nodes to be considered as hubs (b): This parameter
indicates the minimum degree of the nodes which are considered as hubs to
one-hot encode in the node signatures. We experiment with values in the set
[50, 100, 150].

• Batch Size (B): We vary the batch size depending on the graph type: For the
8 non-attributed graphs, we explore batch sizes within [512, 1024]. For the 4
attributed graphs coming from [131], we search within [2048, 4096]. For OGB
datasets, we use 32768 for Collab and PPA, and 261424 for Citation2.

More ablation study can be found in Appendix C.5.4.

C.4 Exploring Bag-Of-Words Node Attributes

In Section 4.4, we delved into the capability of GNNs to discern joint structural

features, particularly when presented with Quasi-Orthogonal (QO) vectors. Notably,

many graph benchmarks utilize text data to construct node attributes, representing

them as Bag-Of-Words (BOW). BOW is a method that counts word occurrences,

assigning these counts as dimensional values. With a large dictionary, these BOW

node attribute vectors often lean towards QO due to the sparse nature of word rep-

resentations. Consequently, many node attributes in graph benchmarks inherently

possess the QO trait. Acknowledging GNNs’ proficiency with QO vector input, we

propose the question: Is it the QO property or the information embedded within

these attributes that significantly impacts link prediction in benchmarks? This section

is an empirical exploration of this inquiry.

C.4.1 Node Attribute Orthogonality

Our inquiry begins with the assessment of node attribute orthogonality across

three attributed graphs: CS, Photo, and Collab. CS possesses extensive BOW vo-

cabulary, resulting in node attributes spanning over 8000 dimensions. Contrarily,

Photo has a comparatively minimal dictionary, encompassing just 745 dimensions.

Collab, deriving node attributes from word embeddings, limits to 128 dimensions.

204

Figure C.2: Heatmap illustrating the inner product of node attributes across CS,
Photo, and Collab datasets.

Figure C.3: Heatmap illustrating the inner product of node attributes, arranged by
node labels, across CS and Photo. The rightmost showcases the inner product of QO
vectors.

205

For our analysis, we sample 10000 nodes (7650 for Photo) and compute the inner

product of their attributes. The results are visualized in Figure C.2. Our findings

confirm that with a larger BOW dimension, CS node attributes closely follow QO.

However, this orthogonality isn’t as pronounced in Photo and Collab—especially

Collab, where word embeddings replace BOW. Given that increased node signature

dimensions can mitigate estimation variance (as elaborated in Theorem 5), one could

posit GNNs might offer enhanced performance on CS, due to its extensive BOW

dimensions. Empirical evidence from Table 4.2 supports this claim.

Further, in Figure C.3, we showcase the inner product of node attributes in CS

and Photo, but this time, nodes are sequenced by class labels. This order reveals

that nodes sharing labels tend to have diminished orthogonality compared to ran-

dom pairs—a potential variance amplifier in structural feature estimation using node

attributes.

C.4.2 Role of Node Attribute Information

To discern the role of embedded information within node attributes, we replace

the original attributes in CS, Photo, and Collab with random vectors—denoted as

random feat. These vectors maintain the original attribute dimensions, though each

dimension gets randomly assigned values from {−1, 1}. The subsequent findings are

summarized in Table C.3. Intriguingly, even with this “noise” as input, performance

remains largely unaltered. CS attributes appear to convey valuable insights for link

predictions, but the same isn’t evident for the other datasets. In fact, introducing

random vectors to Computers and Photo resulted in enhanced outcomes, perhaps due

to their original attribute’s insufficient orthogonality hampering effective structural

feature capture. Collab shows a performance drop with random vectors, implying

that the original word embedding can contribute more to the link prediction than

structural feature estimation with merely 128 QO vectors.

206

TABLE C.3

PERFORMANCE COMPARISON OF GNNS USING NODE

ATTRIBUTES VERSUS RANDOM VECTORS (HITS@50).

CS Physics Computers Photo Collab

GCN 66.00±2.90 73.71±2.28 22.95±10.58 28.14±7.81 35.53±2.39

GCN(random feat) 51.67±2.70 69.55±2.45 35.86±3.17 46.84±2.53 17.25±1.15

SAGE 57.79±18.23 74.10±2.51 1.86±2.53 5.70±10.15 36.82±7.41

SAGE(random feat) 11.78±1.62 64.71±3.65 29.23±3.92 39.94±3.41 28.87±2.36

Random feat

GCN(F = 1000) 3.73±1.44 49.28±2.74 36.92±3.36 48.72±3.84 31.93±2.10

GCN(F = 2000) 24.97±2.67 49.13±4.64 40.24±3.04 53.49±3.50 40.16±1.70

GCN(F = 3000) 39.51±6.47 53.76±3.85 42.33±3.82 56.27±3.47 47.22±1.60

GCN(F = 4000) 43.23±3.37 61.86±4.10 42.85±3.60 56.87±3.59 50.40±1.28

GCN(F = 5000) 48.25±3.28 63.19±4.31 44.52±2.78 58.13±3.79 52.13±1.02

GCN(F = 6000) 51.44±1.50 65.10±4.11 44.90±2.74 58.10±3.35 53.78±0.84

GCN(F = 7000) 52.00±1.74 66.76±3.32 45.11±3.69 57.41±2.62 55.04±1.06

GCN(F = 8000) 54.21±3.47 69.27±2.94 44.47±4.11 58.67±3.90 55.36±1.15

GCN(F = 9000) 53.16±2.80 70.79±2.83 45.03±3.13 57.15±3.87 OOM

GCN(F = 10000) 55.91±2.63 71.88±3.29 45.26±1.94 58.12±2.54 OOM

For simplicity, all GNNs are configured with two layers.

207

C.4.3 Expanding QO Vector Dimensions

Lastly, we substitute node attributes with QO vectors of varied dimensions, utiliz-

ing GCN as the encoder. The outcomes of this experiment are cataloged in Table C.3.

What’s striking is that GCNs, when furnished with lengthier random vectors, often

amplify link prediction results across datasets, with the exception of CS. On Com-

puters and Photo, a GCN even rivals our proposed model (Table 4.2), potentially

attributed to the enlarged vector dimensions. This suggests that when computa-

tional resources permit, expanding our main experiment’s node signature dimensions

(currently set at 1024) could elevate our model’s performance. On Collab. the per-

formance increases significantly compared to the experiments which are input with

128-dimensional vectors, indicating that the structural features are more critical for

Collab than the word embedding.

C.5 Additional experiments

C.5.1 Node label estimation accuracy and time

Figure C.4: MSE of estimation for #(1, 1), #(1, 2) and #(1, 0) on Collab. Lower
values are better.

208

Figure C.5: MSE of estimation for #(2, 2), #(2, 0) and estimation time on Collab.
Lower values are better.

In Figure C.4, we assess the accuracy of node label count estimation. For ELPH,

the node signature dimension corresponds to the number of MinHash permutations.

We employ a default hyperparameter setting for Hyperloglog, with p = 8, a configu-

ration that has demonstrated its adequacy in [22]. For time efficiency evaluation, we

initially propagate and cache node signatures, followed by performing the estimation.

Furthermore, we evaluate the node label count estimation for #(2, 2) and #(2, 0).

The outcomes are detailed in Figure C.5. While MPLP consistently surpasses ELPH

in estimation accuracy, the gains achieved via one-hot hubs diminish for #(2, 2) and

#(2, 0) relative to node counts at a shortest-path distance of 1. This diminishing

performance gain can be attributed to our selection criteria for one-hot encoding,

which prioritizes nodes that function as hubs within a one-hop radius. However,

one-hop hubs don’t necessarily serve as two-hop hubs. While we haven’t identified

a performance drop for these two-hop node label counts, an intriguing avenue for

future research would be to refine variance reduction strategies for both one-hop and

two-hop estimations simultaneously.

Regarding the efficiency of estimation, MPLP consistently demonstrates superior

computational efficiency in contrast to ELPH. When we increase the node signature

dimension to minimize estimation variance, ELPH’s time complexity grows exponen-

209

tially and becomes impractical. In contrast, MPLP displays a sublinear surge in

estimation duration.

It’s also worth noting that ELPH exhausts available memory when the node

signature dimension surpasses 3000. This constraint arises as ELPH, while estimating

structural features, has to cache node signatures for both MinHash and Hyperloglog.

Conversely, MPLP maintains efficiency by caching only one type of node signatures.

C.5.2 Model enhancement ablation

TABLE C.4

ABLATION STUDY ON NON-ATTRIBUTED BENCHMARKS

EVALUATED BY HITS@50.

USAir NS PB Yeast C.ele Power Router E.coli

w/o Shortcut removal 80.94±3.49 85.47±2.60 49.51±3.57 82.62±0.99 57.51±2.09 19.99±2.54 36.67±10.03 76.94±1.54

w/o One-hot hubs 84.04±4.53 89.45±2.60 51.49±2.63 85.11±0.62 66.85±3.04 29.54±1.79 50.81±3.74 79.07±2.47

w/o Norm rescaling 85.04±2.64 89.34±2.79 52.50±2.90 83.01±1.03 66.81±4.11 29.00±2.30 50.43±3.59 79.36±2.18

MPLP 85.19±4.59 89.58±2.60 52.84±3.39 85.11±0.62 67.97±2.96 29.54±1.79 51.04±4.03 79.35±2.35

The format is average score ± standard deviation. The top three models are colored by First, Second,
Third.

We investigate the individual performance contributions of three primary compo-

nents in MPLP: Shortcut removal, One-hot hubs, and Norm rescaling. To ensure a

fair comparison, we maintain consistent hyperparameters across benchmark datasets,

modifying only the specific component under evaluation. Moreover, node attributes

are excluded from the model’s input for this analysis. The outcomes of this investi-

210

TABLE C.5

ABLATION STUDY ON ATTRIBUTED BENCHMARKS EVALUATED

BY HITS@50.

CS Physics Computers Photo Collab

w/o Shortcut removal 41.63±7.27 62.58±2.40 32.74±3.03 52.09±2.52 60.45±1.44

w/o One-hot hubs 65.49±4.28 71.58±2.28 36.09±4.08 55.63±2.48 65.07±0.47

w/o Norm rescaling 65.20±2.92 67.73±2.54 35.83±3.24 52.59±3.57 63.99±0.59

MPLP 65.70±3.86 71.03±3.55 37.56±3.57 55.63±2.48 66.07±0.47

The format is average score ± standard deviation. The top three models
are colored by First, Second, Third.

gation are detailed in Table C.4 and Table C.5.

Among the three components, Shortcut removal emerges as the most pivotal

for MPLP. This highlights the essential role of ensuring the structural distribution

of positive links is aligned between the training and testing datasets [37].

Regarding One-hot hubs, while they exhibited strong results in the estimation

accuracy evaluations presented in Figure C.4 and Figure C.5, their impact on the

overall performance is relatively subdued. We hypothesize that, in the context of

these sparse benchmark graphs, the estimation variance may not be sufficiently in-

fluential on the model’s outcomes.

Finally, Norm rescaling stands out as a significant enhancement in MPLP. This

is particularly evident in its positive impact on datasets like Yeast, Physics, Photo,

and Collab.

211

C.5.3 Structural features ablation

We further examine the contribution of various structural features to the link

prediction task. These features include: #(1, 1), #(1, 2), #(1, 0), #(2, 2), #(2, 0),

and #(△). To ensure fair comparison, we utilize only the structural features for link

representation, excluding the node representations derived from GNN(·). Given the

combinatorial nature of these features, they are grouped into four categories:

• #(1, 1);

• #(1, 2), #(1, 0);

• #(2, 2), #(2, 0);

• #(△).

The configuration of these structural features and their corresponding results are

detailed in Table C.6 and Table C.7.

Our analysis reveals that distinct benchmark datasets have varied preferences for

structural features, reflecting their unique underlying distributions. For example,

datasets PB and Power exhibit superior performance with 2-hop structural features,

whereas others predominantly favor 1-hop features. Although #(1, 1), which counts

Common Neighbors, is often considered pivotal for link prediction, the two other

1-hop structural features, #(1, 2) and #(1, 0), demonstrate a more pronounced im-

pact on link prediction outcomes. Meanwhile, while the count of triangles, #(△),

possesses theoretical significance for model expressiveness, it seems less influential

for link prediction when assessed in isolation. However, its presence can bolster link

prediction performance when combined with other key structural features.

C.5.4 Parameter sensitivity

We perform an ablation study to assess the hyperparameter sensitivity of MPLP,

focusing specifically on two parameters: Batch Size (B) and Node Signature Dimen-

212

sion (F).

Our heightened attention to B stems from its role during training. Within each

batch, MPLP executes the shortcut removal. Ideally, if B = 1, only one target link

would be removed, thereby preserving the local structures of other links. However,

this approach is computationally inefficient. Although shortcut removal can markedly

enhance performance and address the distribution shift issue (as elaborated in Ap-

pendix C.5.2), it can also inadvertently modify the graph structure. Thus, striking a

balance between computational efficiency and minimal graph structure alteration is

essential.

Our findings are delineated in Table C.8, Table C.9, Table C.10, and Table C.11.

Concerning the batch size, our results indicate that opting for a smaller batch size

typically benefits performance. However, if this size is increased past a certain bench-

mark threshold, there can be a noticeable performance drop. This underscores the

importance of pinpointing an optimal batch size for MPLP. Regarding the node sig-

nature dimension, our data suggests that utilizing longer QO vectors consistently

improves accuracy by reducing variance. This implies that, where resources allow,

selecting a more substantial node signature dimension is consistently advantageous.

C.6 Theoretical analysis

C.6.1 Proof for Theorem 4

We begin by restating Theorem 4 and then proceed with its proof:

Let G = (V,E) be a non-attributed graph and consider a 1-layer GCN/SAGE.

Define the input vectors X ∈ RN×F initialized randomly from a zero-mean distribu-

tion with standard deviation σnode. Additionally, let the weight matrix W ∈ RF ′×F

be initialized from a zero-mean distribution with standard deviation σweight. After

performing message passing, for any pair of nodes {(u, v)|(u, v) ∈ V × V \ E}, the

213

expected value of their inner product is given by:

For GCN:

E(hu · hv) =
C√
d̂ud̂v

∑
k∈Nu

⋂
Nv

1

d̂k
,

For SAGE:

E(hu · hv) =
C√
dudv

∑
k∈Nu

⋂
Nv

1,

where d̂v = dv + 1 and the constant C is defined as C = σ2
nodeσ

2
weightFF

′.

Proof. Define X as
(
X⊤

1 , . . . ,X
⊤
N

)⊤
and W as (W1,W2, . . . ,WF).

Using GCN as the MPNN, the node representation is updated by:

hu = W
∑

k∈N (u)∪{u}

1√
d̂kd̂u

Xk,

where d̂v = dv + 1.

For any two nodes (u, v) from {(u, v)|(u, v) ∈ V × V \ E}, we compute:

hu · hv = h⊤
uhv

=

W
∑

a∈N (u)∪{u}

1√
d̂ad̂u

Xa

⊤W
∑

b∈N (v)∪{v}

1√
d̂bd̂v

Xb


=

∑
a∈N (u)∪{u}

1√
d̂ad̂u

X⊤
a W

⊤W
∑

b∈N (v)∪{v}

1√
d̂bd̂v

Xb

=
∑

a∈N (u)∪{u}

1√
d̂ad̂u

X⊤
a


W⊤

1 W1 · · · W⊤
1 WF

...
...

...

W⊤
F W1 · · · W⊤

F WF


∑

b∈N (v)∪{v}

1√
d̂bd̂v

Xb.

Given that

214

1. E
(
W⊤

i Wj

)
= σ2

weightF
′ when i = j,

2. E
(
W⊤

i Wj

)
= 0 when i ̸= j,

we obtain:

E(hu · hv) = σ2
weightF

′
∑

a∈N (u)∪{u}

1√
d̂ad̂u

X⊤
a

∑
b∈N (v)∪{v}

1√
d̂bd̂v

Xb.

Also the orthogonal of the random vectors guarantee that E
(
X⊤

a Xb

)
= 0 when a ̸= b.

Then, we have:

E(hu · hv) =
C√
d̂ud̂v

∑
k∈Nu

⋂
Nv

1

d̂k

where C = σ2
nodeσ

2
weightFF

′.

This completes the proof for the GCN variant. A similar approach, utilizing the

probabilistic orthogonality of the input vectors and weight matrix, can be employed

to derive the expected value for SAGE as the MPNN.

C.6.2 Proof for Theorem 5

We begin by restating Theorem 5 and then proceed with its proof:

Let G = (V,E) be a graph, and let the vector dimension be given by F ∈ N+.

Define the input vectors X = (Xi,j), which are initialized from a random variable x

having a mean of 0 and a standard deviation of 1√
F
. Using the message-passing as

described by Equation 4.3, for any pair of nodes {(u, v)|(u, v) ∈ V ×V }, the expected

value and variance of their inner product are:

E(hu · hv) = CN(u, v),

Var(hu · hv) =
1

F

(
dudv + CN(u, v)2 − 2CN(u, v)

)
+ FVar

(
x2
)
CN(u, v).

215

Proof. We follow the proof of the theorem in [114]. Based on the message-passing

defined in Equation 4.3:

E(hu · hv) = E

((∑
ku∈Nu

Xku,:

)
·

(∑
kv∈Nv

Xkv ,:

))

= E

(∑
ku∈Nu

∑
kv∈Nv

Xku,:Xkv ,:

)

=
∑

ku∈Nu

∑
kv∈Nv

E(Xku,:Xkv ,:).

Since the sampling of each dimension is independent of each other, we get:

E(hu · hv) =
∑

ku∈Nu

∑
kv∈Nv

F∑
i=1

E(Xku,iXkv ,i).

When ku = kv,

E(Xku,iXkv ,i) = E
(
x2
)
=

1

F
.

When ku ̸= kv,

E(Xku,iXkv ,i) = E(Xku,i)E(Xkv ,i) = 0.

Thus:

E(hu · hv) =
∑

ku∈Nu

∑
kv∈Nv

F∑
i=1

1 (ku = kv)
1

F

=
∑

k∈Nu∩Nv

1 = CN(u, v).

For the variance, we separate the equal from the non-equal pairs of ku and kv.

Note that there is no covariance between the equal pairs and the non-equal pairs due

216

to the independence:

Var(hu · hv) = Var

(∑
ku∈Nu

∑
kv∈Nv

F∑
i=1

Xku,iXkv ,i

)

=
F∑
i=1

Var

(∑
ku∈Nu

∑
kv∈Nv

Xku,iXkv ,i

)

=
F∑
i=1

Var

(∑
k∈Nu∩Nv

x2

)
+Var

 ∑
ku∈Nu

∑
kv∈Nv\{ku}

Xku,iXkv ,i

 .

For the first term, we can obtain:

Var

(∑
k∈Nu∩Nv

x2

)
= Var

(
x2
)
CN(u, v).

For the second term, we further split the variance of linear combinations to the linear

combinations of variances and covariances:

Var

 ∑
ku∈Nu

∑
kv∈Nv\{ku}

Xku,iXkv ,i

 =
∑

ku∈Nu

∑
kv∈Nv\{ku}

Var(Xku,iXkv ,i)+

∑
a∈Nu\{ku}

∑
b∈Nv\{kv ,a}

Cov(Xku,iXkv ,i, Xa,iXb,i).

Note that the Cov(Xku,iXkv ,i, Xa,iXb,i) is Var(Xku,iXkv ,i) =
1
F 2 when (ku, kv) = (b, a),

and otherwise 0.

Thus, we have:

Var

 ∑
ku∈Nu

∑
kv∈Nv\{ku}

Xku,iXkv ,i

 =
1

F 2

(
dudv + CN(u, v)2 − 2CN(u, v)

)
,

and the variance is:

Var(hu · hv) =
1

F

(
dudv + CN(u, v)2 − 2CN(u, v)

)
+ FVar

(
x2
)
CN(u, v).

217

C.6.3 Proof for Theorem 6

We begin by restating Theorem 6 and then proceed with its proof:

Under the conditions defined in Theorem 5, let h
(l)
u denote the vector for node u

after the l-th message-passing iteration. We have:

E
(
h(p)

u · h(q)
v

)
=
∑
k∈V

|walks(p)(k, u)||walks(q)(k, v)|,

where |walks(l)(u, v)| counts the number of length-l walks between nodes u and v.

Proof. Reinterpreting the message-passing described in Equation 4.3, we can equiv-

alently express it as:

ms(l+1)
v =

⋃
u∈Nv

ms(l)u ,h
(l+1)
v =

∑
u∈ms

(l+1)
v

h(0)
u , (C.2)

where ms
(l)
v refers to a multiset, a union of multisets from its neighbors. Initially,

ms
(0)
v = {{v}}. The node vector h(l)

v is derived by summing the initial QO vectors of

the multiset’s elements.

We proceed by induction: Base Case (l = 1):

ms(1)v =
⋃

u∈Nv

ms(0)u =
⋃

u∈Nv

{{u}} = {{k|ω ∈ walks(1)(k, v)}}

Inductive Step (l ≥ 1): Let’s assume that ms
(l)
v = {{k|ω ∈ walks(l)(k, v)}} holds

true for an arbitrary l. Utilizing Equation C.2 and the inductive hypothesis, we

deduce:

ms(l+1)
v =

⋃
u∈Nv

{{k|ω ∈ walks(l)(k, u)}}.

218

If k initiates the l-length walks terminating at v and if v is adjacent to u, then k must

similarly initiate the l-length walks terminating at u. This consolidates our inductive

premise.

With the induction established:

E
(
h(p)

u · h(q)
v

)
= E

 ∑
ku∈ms

(p)
u

h
(0)
ku

·
∑

kv∈ms
(q)
v

h
(0)
kv


The inherent independence among node vectors concludes the proof.

C.7 Limitations

Despite the promising capabilities of MPLP, there are distinct limitations that

warrant attention:

1. Training cost vs. inference cost: The computational cost during training sig-
nificantly outweighs that of inference. This arises from the necessity to remove
shortcut edges for positive links in the training phase, causing the graph struc-
ture to change across different batches. This, in turn, mandates a repeated
computation of the shortest-path neighborhood. Even though MPLP+ can
avoid the computation of the shortest-path neighborhood for each batch, it
shows suboptimal performance compared to MPLP. A potential remedy is to
consider only a subset of links in the graph as positive instances and mask
them, enabling a single round of preprocessing. Exploring this approach will
be the focus of future work.

2. Estimation variance influenced by graph structure: The structure of the graph
itself can magnify the variance of our estimations. Specifically, in dense graphs
or those with a high concentration of hubs, the variance can become substantial,
thereby compromising the accuracy of structural feature estimation.

3. Optimality of estimating structural features: Our research demonstrates the
feasibility of using message-passing to derive structural features. However, its
optimality remains undetermined. Message-passing, by nature, involves sparse
matrix multiplication operations, which can pose challenges in terms of com-
putational time and space, particularly for exceedingly large graphs.

219

TABLE C.6

THE MAPPING BETWEEN THE CONFIGURATION NUMBER AND

THE USED STRUCTURAL FEATURES IN MPLP.

Configurations #(1, 1) #(1, 2) #(1, 0) #(2, 2) #(2, 0) #(△)

(1) ! - - - - -

(2) - ! ! - - -

(3) - - - ! ! -

(4) - - - - - !

(5) ! ! ! - - -

(6) ! - - ! ! -

(7) ! - - - - !

(8) - ! ! ! ! -

(9) - ! ! - - !

(10) - - - ! ! !

(11) ! ! ! ! ! -

(12) ! ! ! - - !

(13) ! - - ! ! !

(14) - ! ! ! ! !

(15) ! ! ! ! ! !

220

TABLE C.7

ABLATION ANALYSIS ON STRUCTURAL FEATURES.

Configurations USAir NS PB Yeast C.ele Power Router E.coli

(1) 76.64±26.74 75.26±2.79 37.48±13.30 58.70±30.50 46.22±24.84 14.40±1.40 17.29±3.96 60.10±30.80

(2) 82.54±4.61 84.76±3.63 41.84±15.51 80.56±0.65 56.22±20.39 21.38±1.46 48.97±3.34 67.78±23.83

(3) 67.76±23.65 70.05±2.35 44.81±2.63 67.02±2.53 36.53±19.68 25.24±4.07 21.32±2.66 56.59±1.78

(4) 37.18±37.57 25.13±1.99 12.35±10.75 7.42±10.80 30.75±18.69 5.47±1.13 30.47±3.10 34.90±36.63

(5) 86.24±2.70 84.91±2.80 48.35±3.76 84.42±0.56 66.69±3.60 22.25±1.39 49.68±3.79 80.94±1.62

(6) 77.41±5.27 80.00±2.39 46.05±2.76 74.70±1.45 46.88±5.79 27.74±3.23 22.37±2.06 71.41±2.47

(7) 71.11±25.51 76.72±2.37 43.57±3.70 73.08±1.23 54.99±20.14 14.50±1.64 31.26±2.87 80.22±2.09

(8) 80.16±4.82 88.67±2.72 52.16±2.25 82.52±0.85 63.82±4.02 28.41±2.00 50.97±3.57 77.26±1.31

(9) 75.13±26.51 87.28±3.33 48.10±3.43 80.84±0.97 60.63±4.54 23.85±1.37 49.78±3.56 76.13±1.81

(10) 76.82±4.28 77.04±3.70 45.42±2.77 67.34±3.20 41.66±13.47 26.95±1.47 28.31±2.76 70.14±0.77

(11) 82.82±5.52 88.91±2.90 52.57±3.05 84.61±0.67 67.11±2.52 28.98±1.73 50.63±3.72 80.16±2.20

(12) 87.29±1.08 88.08±2.59 48.86±3.42 84.59±0.69 66.06±3.74 23.79±1.87 50.06±3.66 79.57±2.46

(13) 78.21±2.74 88.08±3.27 46.00±2.31 74.88±2.49 54.64±4.99 28.82±1.29 26.24±2.18 74.67±3.96

(14) 80.75±5.02 89.14±2.38 51.63±2.67 82.68±0.67 63.01±3.21 29.41±1.44 51.08±4.12 76.88±1.86

(15) 81.06±6.62 89.73±2.12 53.49±2.66 85.06±0.69 66.41±3.02 28.86±2.40 50.63±3.79 78.91±2.58

Ablation analysis highlighting the impact of various structural features on link prediction.
Refer to Table C.6 for detailed configurations of the structural features used.

221

TABLE C.8

ABLATION STUDY OF BATCH SIZE (B) ON NON-ATTRIBUTED

BENCHMARKS EVALUATED BY HITS@50.

USAir NS PB Yeast C.ele Power Router E.coli

MPLP(B = 256) 90.31±1.32 88.98±2.48 51.14±2.44 84.07±0.69 71.59±2.83 28.92±1.67 56.15±3.80 85.12±1.00

MPLP(B = 512) 90.40±2.47 89.40±2.12 49.63±2.08 84.17±0.60 71.72±3.35 28.60±1.66 53.25±6.57 84.72±1.04

MPLP(B = 1024) 90.49±2.22 88.49±2.34 50.60±3.40 83.67±0.57 70.61±4.13 28.63±1.60 49.75±5.14 84.52±1.03

MPLP(B = 2048) 81.20±2.80 61.79±18.55 50.34±3.05 76.79±6.79 31.79±19.88 28.45±1.88 49.37±3.89 84.43±1.28

MPLP(B = 4096) 81.20±2.80 61.79±18.55 52.59±2.36 58.26±7.20 31.54±18.53 27.25±3.30 50.26±3.89 85.15±1.15

MPLP(B = 8192) 81.20±2.80 56.20±21.34 51.91±2.08 24.47±21.12 31.79±19.88 17.22±3.17 38.67±7.78 85.67±0.90

The format is average score ± standard deviation. The top three models are colored by First,
Second, Third.

TABLE C.9

ABLATION STUDY OF BATCH SIZE (B) ON ATTRIBUTED

BENCHMARKS EVALUATED BY HITS@50.

CS Physics Computers Photo

MPLP(B = 256) 74.96±1.87 76.06±1.47 43.38±2.83 57.58±2.92

MPLP(B = 512) 75.61±2.25 75.38±1.79 42.95±2.56 57.19±2.51

MPLP(B = 1024) 74.89±2.00 74.89±1.97 42.69±2.41 56.97±3.20

MPLP(B = 2048) 75.02±2.68 75.47±1.68 41.39±2.87 55.89±3.03

MPLP(B = 4096) 75.46±1.78 74.88±2.57 40.65±2.85 55.89±2.88

MPLP(B = 8192) 75.26±1.91 74.14±2.17 40.00±3.40 55.90±2.52

The format is average score ± standard deviation. The top
three models are colored by First, Second, Third.

222

TABLE C.10

ABLATION STUDY OF NODE SIGNATURE DIMENSION (F) ON

NON-ATTRIBUTED BENCHMARKS EVALUATED BY HITS@50.

USAir NS PB Yeast C.ele Power Router E.coli

MPLP(F = 256) 90.64±2.50 88.52±3.07 50.42±3.86 80.63±0.84 70.89±4.70 25.74±1.59 51.84±2.90 84.60±0.92

MPLP(F = 512) 90.49±1.95 89.18±2.35 51.48±2.63 82.41±1.10 70.91±4.68 27.58±1.80 51.98±4.38 84.70±1.33

MPLP(F = 1024) 90.16±1.61 89.40±2.12 50.60±3.40 83.87±1.06 70.61±4.13 28.88±2.24 53.92±2.88 84.81±0.85

MPLP(F = 2048) 90.14±2.24 89.36±1.92 51.26±1.67 84.20±1.02 72.24±3.31 29.27±1.92 54.50±4.52 84.58±1.42

MPLP(F = 4096) 89.95±1.48 89.54±2.22 51.07±2.87 84.89±0.64 71.91±3.52 29.26±1.51 54.71±5.07 84.67±0.61

The format is average score ± standard deviation. The top three models are colored by First,
Second, Third.

TABLE C.11

ABLATION STUDY OF NODE SIGNATURE DIMENSION (F) ON

ATTRIBUTED BENCHMARKS EVALUATED BY HITS@50.

CS Physics Computers Photo

MPLP(F = 256) 74.90±1.88 73.91±1.41 40.65±3.24 55.13±2.98

MPLP(F = 512) 74.67±2.63 74.49±2.05 39.36±2.28 55.93±3.31

MPLP(F = 1024) 75.02±2.68 75.27±2.95 42.27±3.96 55.89±3.03

MPLP(F = 2048) 75.30±2.14 75.82±2.15 41.98±3.21 57.11±2.56

MPLP(F = 4096) 76.04±1.57 76.17±2.04 43.33±2.93 58.55±2.47

The format is average score ± standard deviation. The top
three models are colored by First, Second, Third.

223

APPENDIX D

YOU DO NOT HAVE TO TRAIN GRAPH NEURAL NETWORKS AT ALL ON

TEXT-ATTRIBUTED GRAPHS

D.1 More strategical design

While the weight matrix obtained by Equation 5.8 is sufficient for a predictive

TrainlessGNN, we further enhance the performance by introducing two more strate-

gical design for our method.

Utilizing Propagated Node Attributes. In updating the representation of vir-

tual label nodes during message passing in Equation 5.8, nodes in the training set are

initially associated with their original node attributes XL. An alternative approach

is to initialize the labeled nodes with a smoothed version of the node attributes. To

execute this, prior to integrating the virtual label nodes into the graph, we conduct

l rounds of message passing as defined by AGG(·). This step refines each labeled

node’s representation over the graph structure. Post this refinement, we introduce

the virtual label nodes into the graph and proceed as earlier, but now associating

labeled nodes with the propagated node attributes. Specifically, the weight matrix

W is now obtained from Equation 5.8 as:

W⊤ = (BL − ω

C
1)⊤H

(l)
L , (D.1)

where H
(l)
L denotes the smoothed node representation of labeled nodes. This ad-

justment is beneficial when the inner product within the same class nodes is not

224

significant. The propagated node attributes can help keep the node attributes closer

to the corresponding class’s trainless weight vector. It’s worth noting that any GNN

can implement the message passing function AGG(·). In practice, the message pass-

ing settings of GCN/SGC are chosen for use.

Weighted message passing. The method used to obtain the weight matrix by

propagating node attributes from the same class as in Equation D.1 treats each node

equally, without considering their local structural information. To integrate this

structural information into the weight matrix calculation, we introduce a weighted

message passing technique. This approach is inspired by the Adamic Adar index

(AA) [4] and Resource Allocation (RA) [191], utilized in link prediction. In this

context, messages from nodes with fewer neighbors are given more weight compared

to messages from hub nodes. On the contrary, the unweighted version can be seen as

an approach akin to Common Neighbor (CN) [91]. The formal expression for message

passing is then reformulated as:

W⊤ = RL(BL − ω

C
1)⊤H

(l)
L , (D.2)

where RL is the degree normalization matrix specific to the labeled nodes. To com-

pute RL, we initially determine the normalization matrix R for the entire node set,

which encompasses both L and U . Based on the degree matrix D, for AA, we have

R = (logD)−1 and for RA, R = D−1. For the CN-type message passing, we simply

set R = I. RL is then acquired by extracting the corresponding portions from R for

labeled nodes.

225

Figure D.1: Training efficiency of TrainlessGNN compared to the traditional gradient
descent optimizations.

D.2 Supplementary experiments

D.2.1 Statistics of benchmark datasets

We show the statistics of the benchmark datasets in Table D.1. The data re-

veals that the three Planetoid datasets (Cora, Citeseer, and Pubmed) along with

the two Coauthor datasets (CS and Physics) exhibit clear characteristics of over-

parameterization and quasi-orthogonality. These traits contribute to TrainlessGNN

achieving superior performance even when compared to trained models. Conversely,

the Amazon co-purchase networks, despite showing over-parameterization, exhibit

weaker quasi-orthogonality (See Figure 5.1). For the other two OGB datasets

(OGBN-Arxiv and OGBN-Products), the abundance of labeled nodes in the training

sets alleviates the semi-supervised node classification task for the trained models.

226

TABLE D.1

THE STATISTICS OF THE BENCHMARK DATASETS.

Dataset #Nodes #Edges #Classes Attr. Dimension Text Encoding #Training/#Validation/#Testing

Cora 2708 10556 7 1433 BOW 140/500/1000

Citeseer 3327 9104 6 3703 BOW 120/500/1000

Pubmed 19717 88648 3 500 TF-IDF 60/500/1000

CS 18333 163788 15 6805 BOW 300/450/17583

Physics 34493 495924 5 8415 BOW 100/150/34243

Computers 13752 491722 10 767 BOW 200/300/13252

Photo 7650 238162 8 745 BOW 160/240/7250

OGBN-Products 2449029 123718152 47 100 BOW+PCA 196615/39323/2213091

OGBN-Arxiv 169343 2315598 40 128 Average of word embedding 90941/29799/48603

D.2.2 Baseline model details

Baseline method C&S. Recall that the C&S approach [64] commences training

with an MLP solely on node attributes, disregarding the graph structure. It then

propagates the computed logits through the graph to refine predictions based on the

graph structure, as formulated:

Ẑ = MLP(X),Z = C&S(Ẑ,A), (D.3)

where Ẑ represents the logits for the node classification tasks. The logit propagation

process in C&S(·) encompasses a two-step sequence, namely the Correct(·) step and

Smooth(·) step:

C&S = Smooth ◦ Correct(Ẑ,A,B), (D.4)

where B denotes the one-hot encoding of the labels.

227

The Correct(·) step is implemented as:

E(ℓ) = α1D
−1/2AD−1/2E(ℓ−1) + (1− α1)E

(ℓ−1) (D.5)

Z′ = Z+ γ · E(L1), (D.6)

where E(ℓ) ∈ Rn×C symbolizes the error matrix and γ represents the scaling factor.

The error matrix is defined as follows:

E
(0)
i =


Bi − Ẑi, if vi ∈ L,

0, else.

(D.7)

Subsequently, the Correct(·) step is defined as:

Z
(0)
i =


Bi, if vi ∈ L,

Z′
i, else

(D.8)

Z(ℓ) = α2D
−1/2AD−1/2Z(ℓ−1) + (1− α2)Z

(ℓ−1) (D.9)

Z = Ẑ(L2). (D.10)

For a fair comparison, we employ a linear classifier as the base predictor for the

C&S model in the experiment section’s baseline model. This choice is motivated by

the fact that the trainless version of the C&S model is also implemented with solely

a linear classifier serving as the predictor.

D.2.3 Software and hardware details

We implement TrainlessGNN in Pytorch Geometric framework [50]. We run our

experiments on a Linux system equipped with an NVIDIA A100 GPU.

228

D.2.4 Hyperparameter selections

Our method only has two hyperparameters governing the fitted weight matrix,

which makes it easy to find the optimal hyperparameter setting. The two hyper-

parameters are the edge weight ω and the degree normalization matrix R. Thus,

we tune ω in [−1, 0, 0.001, 0.01, 0.1, 1]. For R, we select the message passing types

in Equation D.2 between CN, AA and RA. For the baseline methods, we train for

100 epochs and fine-tune the number of GNN layers, the learning rate, and the l-2

norm penalty. All the final result is selected based on the model’s performance on

the validation set.

D.2.5 Parameter Sensitivity

We further conduct a parameter sensitivity analysis to investigate the impact of

the hyperparameters on TrainlessGNN. This analysis is performed using Trainless

SGC, with the results shown in Figure D.2. The findings underscore that the optimal

degree normalization matrix, R, may vary across different benchmarks due to their

unique data attributes. For example, RA-type message passing excels on the Pubmed

and OGBN-Arxiv datasets, while CN and AA-type message passing proves more ro-

bust on the remaining datasets. Concurrently, the edge weight, ω, remains consistent

across varied settings. However, a larger setting of ω (ω = 1) can adversely affect the

performance of our trainless methods by excessively penalizing the node attributes

from other classes. Intriguingly, even with a slightly negative value of ω, our trainless

model retains its efficacy. In such scenarios, the weight vector consists of not only

the node attributes from the corresponding class but also from other classes. Yet, a

continual reduction in ω leads to a marked performance decline, indicating that the

weight vectors could become indistinguishable under such conditions.

229

Figure D.2: Parameter sensitivity analysis for degree normalization matrix R and
edge weight ω using the Trainless SGC model.

D.2.6 Experimental details on heterophilous graphs

On heterophilous graphs, we take the same experimental protocol as [23] to par-

tition the datasets into 10 different splits. The splits are predefined as [29]. We run

the same set of hyperparameter selections as the homophilous graph experiments.

We also conduct an experiment that fits the model including labels from validation

sets. The results are shown in Figure D.3. We can see that the benefits of bringing

more validation labels are marginal to TrainlessGNN on the heterophilous graphs.

230

Figure D.3: Performance of our methods on heterophilous graphs. ∗ indicates the
models trained with training and validation labels.

D.3 Limitations

Despite the efficacy of our proposed method in tackling the semi-supervised node

classification problem on text-attributed graphs, certain limitations prevail. Firstly,

our method is confined to fitting a linear GNN model, which may limit the model’s ex-

pressiveness. Secondly, the successful deployment of our method depends on specific

data configurations, namely over-parameterization, potentially narrowing its appli-

cability across a broader spectrum of cases.

231

APPENDIX E

UNIVERSAL LINK PREDICTOR BY IN-CONTEXT LEARNING ON GRAPHS

E.1 Experimental details

E.1.1 Pretrain and test benchmarks

Comprehensive details of the curated pretrain and test graph datasets are pro-

vided in Table E.1. These datasets, selected from various domains and featuring

diverse graph statistics, are specifically chosen to ensure that our proposed UniLP

model is exposed to a wide range of LP connectivity patterns. This diversity in train-

ing data is crucial for enabling UniLP to effectively adapt to new, unseen graphs.

Figure E.1: Performance of UniLP with varying quantities of in-context links on the
rest of graph datasets.

232

E.1.2 Pretraining the Models

We pretrain UniLP on the datasets listed in Table E.1, employing an approach

by sampling an equal number of non-connected node pairs (V × V \Eo) as negative

samples to match the count of observed links (|Eo|) in each graph. The pretraining

follows a standard binary classification framework.

For predicting each query link, we sample 40 positive and negative links as in-

context links (S+ ∪ S−) from the respective pretrain dataset. This setup ensures

variability: different query links from the same dataset or the same query link across

training batches may be paired with different in-context links. However, during

testing, the set of in-context links for each test dataset remains constant. This

training methodology serves multiple purposes: it enhances UniLP’s generalization

capabilities by exposing it to a broad range of in-context links and optimizes GPU

memory usage by selecting a manageable yet diverse set of in-context links during

pretraining.

The pretraining phase incorporates an early stopping criterion based on perfor-

mance across a merged validation set, which comprises 200 links from the validation

set of each test dataset. This approach will stop UniLP’s optimization once it reaches

optimal performance on this merged validation set, ensuring efficiency and preventing

overfitting.

E.1.3 Software and hardware details

We implement UniLP in Pytorch Geometric framework [50]. We conduct our

experiments on a Linux system equipped with an NVIDIA A100 GPU with 80GB of

memory.

233

E.2 Theoretical analysis

E.2.1 More discussions about the connectivity patterns

In the initial definition (Definition 5), connectivity patterns are characterized as

ordered sequences of events that are satisfied by the features of links. This concept

underpins the idea that if two graphs exhibit identical connectivity patterns, a LP

model trained on one graph could theoretically be applied to the other without re-

training. The rationale behind this is rooted in the LP task’s core objective: to

prioritize true links over false ones through ranking. Hence, a consistent ranking

mechanism across different graphs allows for the same heuristic-based link predictor

to be effectively utilized for LP tasks across those graphs.

It might be tempting to equate connectivity patterns directly with graph distri-

butions; however, this is a misconception. Graphs can share identical connectivity

patterns yet differ significantly in their underlying distributions. An illustrative ex-

ample is provided by graphs generated through the Stochastic Block Model [60] with

distinct parameters, which may still present identical connectivity patterns provided

their intra-block edge probabilities are higher than those between blocks.

Consequently, despite real-world graphs often exhibiting varied underlying distri-

butions—reflected in aspects such as node degrees, graph sizes, and densities—the

question of whether a singular, common connectivity pattern exists across diverse

graphs remains non-trivial. This inquiry forms the theoretical foundation for our

Universal Link Predictor model, challenging us to explore the feasibility of apply-

ing one singular link prediction methodology in a world of inherently distinct graph

structures.

E.2.2 Proof for Theorem 7

We first restate the theorem and proceed with the proof:

234

Define A2 = |π2(u, v)| ≥ 1 and A3 = |π3(u, v)| ≥ 1 as elements of ω. The

connectivity patterns on Grid and Triangular graphs are distinct. Specifically:

(i) On Grid: ω = [A3, A2]; (ii) On Triangular: ω = [A2, A3].

Proof. In a Grid graph, the probability of a connection given a 2-hop simple path,

p(y = 1|A2), can be expressed as p(y=1,A2)
p(A2)

. The absence of any 2-hop connected node

pairs (u, v) ∈ Eo implies p(y = 1, A2) = 0, leading to p(y = 1|A2) = 0.

Considering the symmetric nature of nodes in a synthetic Grid graph, we select

an arbitrary node as an anchor. Identifying nodes with a 3-hop simple path to this

anchor reveals that:

p(y = 1|A3) =
p(y = 1, A3)

p(A3)
=

4

16
=

1

4
. (E.1)

This calculation confirms the connectivity sequence on Grid as ω = [A3, A2].

Conversely, in a Triangular graph, the probabilities given a 2-hop and a 3-hop

simple path are calculated as:

p(y = 1|A2) =
p(y = 1, A2)

p(A2)
=

6

18
=

1

3
,

p(y = 1|A3) =
p(y = 1, A3)

p(A3)
=

6

36
=

1

6
.

Thus, establishing the connectivity sequence for Triangular as ω = [A2, A3], which is

in direct contrast to that of Grid graphs, highlighting the inherent difference in their

connectivity patterns.

235

TABLE E.1

THE PRETRAIN DATASETS AND TEST BENCHMARKS.

Dataset Pretrain Test # Nodes # Edges Avg. node deg. Std. node deg. Max. node deg. Density

Biology

Ecoli ! - 1805 29320 16.24 48.38 1030 1.8009%

Yeast ! - 2375 23386 9.85 15.5 118 0.8295%

Celegans - ! 297 4296 14.46 12.97 134 9.7734%

Transport

Power ! - 4941 13188 2.67 1.79 19 0.1081%

USAir - ! 332 4252 12.81 20.13 139 7.7385%

Web

PolBlogs ! - 1490 19025 12.77 20.73 256 1.7150%

Router ! - 5022 12516 2.49 5.29 106 0.0993%

PB - ! 1222 33428 27.36 38.42 351 4.4808%

Collaboration

Physics ! - 34493 495924 14.38 15.57 382 0.0834%

CS - ! 18333 163788 8.93 9.11 136 0.0975%

NS - ! 1589 5484 3.45 3.47 34 0.4347%

Citation

Pubmed ! - 19717 88648 4.5 7.43 171 0.0456%

Citeseer ! - 3327 9104 2.74 3.38 99 0.1645%

Cora - ! 2708 10556 3.9 5.23 168 0.2880%

Social

Twitch ! - 34118 429113 12.58 35.88 1489 0.0737%

Github ! - 37700 289003 7.67 46.59 6809 0.0407%

Facebook - ! 22470 171002 7.61 15.26 472 0.0677%

236

APPENDIX F

ADAPTING GNNS TO RELATIONAL DATABASE

F.1 Technical details

F.1.1 Txn-Bert configuration

For the text encoding within Rel-Cat, we utilize the transformer architecture

from Sentence-Bert [125], specifically leveraging the HuggingFace implementation of

Sentence-Bert1. We primarily employ a 6-layer transformer configuration for Rel-Cat

due to its efficiency and sufficiency in capturing relevant features from the transaction

data. In our experiments, as detailed in Table 3.1, a 12-layer transformer was tested

solely for ablation study purposes. The results indicated that the 6-layer model

provided comparable performance with marginal benefits from the more complex

12-layer model.

F.1.2 Inference

In both the Zero Shot and Few Shot settings, we determine the scores by comput-

ing the inner product between the transaction and Category embeddings to identify

the top 5 most likely predictions for a given transaction.

In Zero Shot setting, Txn-Bert encodes both the new transaction and all Cat-

egory labels into text embeddings. The cosine similarities between the transaction

embedding and each Category are then calculated, ranked, and the top 5 predictions

are selected based on these rankings.

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

237

For the Few Shot setting, TopK NN is firstly employed to identify similar historical

transactions for a given company, with a similarity threshold set at 0.8. The Cat-

egory labels corresponding to these similar historical transactions are directly used

as predictions. If fewer than 5 distinct Category are identified through this method,

we engage the GNN component of Rel-Cat to compute embeddings for the trans-

action and Category . A ranking process is then conducted to select any remaining

predictions needed to complete the top 5.

F.1.3 Software and Hardware details

We develop Rel-Cat using the PyTorch framework, PyTorch Geometric for graph

neural network operations, and the HuggingFace library for transformer architectures.

All experiments were conducted on an Amazon SageMaker instance equipped with

four V100 GPUs.

F.2 Supplementary experiments

F.2.1 Prediction cascade

In the Rel-Cat pipeline shown in Figure 4.4, the processed graph initially enters

the TopK NN module, which serves as an early exit strategy to identify similar

transactions via text embeddings. If this step does not yield sufficient Category

predictions, the pipeline advances to the GNNs for additional predictions.

Our analysis of this cascade, shown in Figure F.1, reveals that for Top 1 pre-

dictions, TopK NN alone efficiently handles over 68% of transactions. This high

percentage underscores the prevalence of similar transactions within the database.

However, to generate the top 5 predictions, more than 96% of transactions require

processing by the GNNs, indicating the need for a more in-depth computation to

fulfill broader prediction requirements.

238

Figure F.1: Cascade Process in Rel-Cat. TopK NN efficiently resolves over 68% of
transactions when only a Top 1 prediction is needed. However, for more comprehen-
sive Top 5 predictions, over 96% of transactions necessitate processing by GNNs.

This flexible approach in Rel-Cat demonstrates the system’s adaptability, allow-

ing for a balance between efficiency and thoroughness in prediction based on system

demands and user experience considerations.

239

BIBLIOGRAPHY

1. R. Abboud, I. I. Ceylan, M. Grohe, and T. Lukasiewicz. The Surprising Power
of Graph Neural Networks with Random Node Initialization, 2021. eprint:
2010.01179.

2. R. Abboud, R. Dimitrov, and I. I. Ceylan. Shortest Path Networks for Graph
Property Prediction. Nov. 2022. URL https://openreview.net/forum?id=

mWzWvMxuFg1.

3. R. Ackland and others. Mapping the US political blogosphere: Are conservative
bloggers more prominent? In BlogTalk Downunder 2005 Conference, Sydney,
2005.

4. L. A. Adamic and E. Adar. Friends and neighbors on the Web. Social Net-
works, 25(3):211–230, 2003. ISSN 0378-8733. doi: https://doi.org/10.1016/
S0378-8733(03)00009-1. URL https://www.sciencedirect.com/science/

article/pii/S0378873303000091.

5. L. A. Adamic and N. Glance. The political blogosphere and the 2004 U.S. elec-
tion: divided they blog. In Proceedings of the 3rd international workshop on Link
discovery, LinkKDD ’05, pages 36–43, New York, NY, USA, Aug. 2005. Associa-
tion for Computing Machinery. ISBN 978-1-59593-215-0. doi: 10.1145/1134271.
1134277. URL https://dl.acm.org/doi/10.1145/1134271.1134277.

6. A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy. Deep Variational In-
formation Bottleneck. Apr. 2023. URL https://openreview.net/forum?id=

HyxQzBceg.

7. U. Alon and E. Yahav. On the Bottleneck of Graph Neural Networks and its
Practical Implications. arXiv:2006.05205 [cs, stat], Mar. 2021. URL http:

//arxiv.org/abs/2006.05205. arXiv: 2006.05205.

8. M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant Risk Mini-
mization, July 2019. URL https://arxiv.org/abs/1907.02893v3.

9. A.-L. Barabási and R. Albert. Emergence of Scaling in Random Net-
works. Science, 286(5439):509–512, 1999. doi: 10.1126/science.286.5439.509.
URL https://www.science.org/doi/abs/10.1126/science.286.5439.509.
eprint: https://www.science.org/doi/pdf/10.1126/science.286.5439.509.

240

https://openreview.net/forum?id=mWzWvMxuFg1
https://openreview.net/forum?id=mWzWvMxuFg1
https://www.sciencedirect.com/science/article/pii/S0378873303000091
https://www.sciencedirect.com/science/article/pii/S0378873303000091
https://dl.acm.org/doi/10.1145/1134271.1134277
https://openreview.net/forum?id=HyxQzBceg
https://openreview.net/forum?id=HyxQzBceg
http://arxiv.org/abs/2006.05205
http://arxiv.org/abs/2006.05205
https://arxiv.org/abs/1907.02893v3
https://www.science.org/doi/abs/10.1126/science.286.5439.509

10. V. Batagelj and A. Mrvar. Pajek datasets website, 2006. URL http://vlado.

fmf.uni-lj.si/pub/networks/data/.

11. M. Belkin. Fit without fear: remarkable mathematical phenomena of deep
learning through the prism of interpolation, May 2021. URL http://arxiv.

org/abs/2105.14368. arXiv:2105.14368 [cs, math, stat].

12. J. Betker, G. Goh, L. Jing, T. Brooks, J. Wang, L. Li, L. Ouyang, J. Zhuang,
J. Lee, Y. Guo, W. Manassra, P. Dhariwal, C. Chu, Y. Jiao, and A. Ramesh.
Improving Image Generation with Better Captions. URL https://api.

semanticscholar.org/CorpusID:264403242.

13. B. Bevilacqua, Y. Zhou, and B. Ribeiro. Size-Invariant Graph Representations
for Graph Classification Extrapolations, 2021. URL https://arxiv.org/abs/

2103.05045.

14. A. P. Bradley. The use of the area under the ROC curve in the evaluation
of machine learning algorithms. Pattern Recognition, 30(7):1145–1159, July
1997. ISSN 0031-3203. doi: 10.1016/S0031-3203(96)00142-2. URL https:

//www.sciencedirect.com/science/article/pii/S0031320396001422.

15. S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. Computer Networks, 30:107–117, 1998. URL http://www-db.

stanford.edu/~backrub/google.html.

16. S. Brody, U. Alon, and E. Yahav. How Attentive are Graph At-
tention Networks?, Jan. 2022. URL http://arxiv.org/abs/2105.14491.
arXiv:2105.14491 [cs].

17. M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst.
Geometric deep learning: going beyond Euclidean data. IEEE Signal Pro-
cessing Magazine, 34(4):18–42, July 2017. ISSN 1053-5888, 1558-0792. doi:
10.1109/MSP.2017.2693418. URL http://arxiv.org/abs/1611.08097. arXiv:
1611.08097.

18. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language Models
are Few-Shot Learners, July 2020. URL http://arxiv.org/abs/2005.14165.
arXiv:2005.14165 [cs].

19. J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral Networks and Locally
Connected Networks on Graphs. arXiv:1312.6203 [cs], May 2014. URL http:

//arxiv.org/abs/1312.6203. arXiv: 1312.6203.

241

http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://arxiv.org/abs/2105.14368
http://arxiv.org/abs/2105.14368
https://api.semanticscholar.org/CorpusID:264403242
https://api.semanticscholar.org/CorpusID:264403242
https://arxiv.org/abs/2103.05045
https://arxiv.org/abs/2103.05045
https://www.sciencedirect.com/science/article/pii/S0031320396001422
https://www.sciencedirect.com/science/article/pii/S0031320396001422
http://www-db.stanford.edu/~backrub/google.html
http://www-db.stanford.edu/~backrub/google.html
http://arxiv.org/abs/2105.14491
http://arxiv.org/abs/1611.08097
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1312.6203

20. D. Buffelli, P. Liò, and F. Vandin. SizeShiftReg: a Regularization Method for
Improving Size-Generalization in Graph Neural Networks, 2022. URL https:

//arxiv.org/abs/2207.07888.

21. Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, and P. Veličković.
Combinatorial optimization and reasoning with graph neural networks, Sept.
2022. URL http://arxiv.org/abs/2102.09544. arXiv:2102.09544 [cs].

22. B. P. Chamberlain, S. Shirobokov, E. Rossi, F. Frasca, T. Markovich, N. Y.
Hammerla, M. M. Bronstein, and M. Hansmire. Graph Neural Networks for Link
Prediction with Subgraph Sketching. Sept. 2022. URL https://openreview.

net/forum?id=m1oqEOAozQU.

23. S. Chanpuriya and C. N. Musco. Simplified Graph Convolution with Het-
erophily. May 2022. URL https://openreview.net/forum?id=jRrpiqxtrWm.

24. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE:
Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence
Research, 16:321–357, June 2002. ISSN 1076-9757. doi: 10.1613/jair.953. URL
http://arxiv.org/abs/1106.1813. arXiv:1106.1813 [cs].

25. D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. Measuring and Relieving
the Over-smoothing Problem for Graph Neural Networks from the Topological
View. In AAAI, 2020.

26. Y. Chen, L. Wu, and M. Zaki. Iterative Deep Graph Learning for Graph Neu-
ral Networks: Better and Robust Node Embeddings. In Advances in Neural
Information Processing Systems, volume 33, pages 19314–19326. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/

hash/e05c7ba4e087beea9410929698dc41a6-Abstract.html.

27. Z. Chen, L. Chen, S. Villar, and J. Bruna. Can Graph Neural Networks Count
Substructures? arXiv:2002.04025 [cs, stat], Oct. 2020. URL http://arxiv.

org/abs/2002.04025. arXiv: 2002.04025.

28. Z. Chen, H. Mao, H. Li, W. Jin, H. Wen, X. Wei, S. Wang, D. Yin, W. Fan,
H. Liu, and J. Tang. Exploring the Potential of Large Language Models (LLMs)
in Learning on Graphs, Aug. 2023. URL http://arxiv.org/abs/2307.03393.
arXiv:2307.03393 [cs].

29. M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam,
and S. Slattery. Learning to construct knowledge bases from the World
Wide Web. Artificial Intelligence, 118(1):69–113, Apr. 2000. ISSN 0004-3702.
doi: 10.1016/S0004-3702(00)00004-7. URL https://www.sciencedirect.

com/science/article/pii/S0004370200000047.

30. E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. AutoAugment:
Learning Augmentation Policies from Data, Apr. 2019. URL http://arxiv.

org/abs/1805.09501. arXiv:1805.09501 [cs, stat].

242

https://arxiv.org/abs/2207.07888
https://arxiv.org/abs/2207.07888
http://arxiv.org/abs/2102.09544
https://openreview.net/forum?id=m1oqEOAozQU
https://openreview.net/forum?id=m1oqEOAozQU
https://openreview.net/forum?id=jRrpiqxtrWm
http://arxiv.org/abs/1106.1813
https://proceedings.neurips.cc/paper/2020/hash/e05c7ba4e087beea9410929698dc41a6-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e05c7ba4e087beea9410929698dc41a6-Abstract.html
http://arxiv.org/abs/2002.04025
http://arxiv.org/abs/2002.04025
http://arxiv.org/abs/2307.03393
https://www.sciencedirect.com/science/article/pii/S0004370200000047
https://www.sciencedirect.com/science/article/pii/S0004370200000047
http://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1805.09501

31. D. Dai, Y. Sun, L. Dong, Y. Hao, S. Ma, Z. Sui, and F. Wei. Why Can GPT
Learn In-Context? Language Models Implicitly Perform Gradient Descent as
Meta-Optimizers, Dec. 2022. URL https://arxiv.org/abs/2212.10559v3.

32. DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu,
S. Ma, P. Wang, X. Bi, X. Zhang, X. Yu, Y. Wu, Z. F. Wu, Z. Gou, Z. Shao,
Z. Li, Z. Gao, A. Liu, B. Xue, B. Wang, B. Wu, B. Feng, C. Lu, C. Zhao,
C. Deng, C. Zhang, C. Ruan, D. Dai, D. Chen, D. Ji, E. Li, F. Lin, F. Dai,
F. Luo, G. Hao, G. Chen, G. Li, H. Zhang, H. Bao, H. Xu, H. Wang, H. Ding,
H. Xin, H. Gao, H. Qu, H. Li, J. Guo, J. Li, J. Wang, J. Chen, J. Yuan,
J. Qiu, J. Li, J. L. Cai, J. Ni, J. Liang, J. Chen, K. Dong, K. Hu, K. Gao,
K. Guan, K. Huang, K. Yu, L. Wang, L. Zhang, L. Zhao, L. Wang, L. Zhang,
L. Xu, L. Xia, M. Zhang, M. Zhang, M. Tang, M. Li, M. Wang, M. Li, N. Tian,
P. Huang, P. Zhang, Q. Wang, Q. Chen, Q. Du, R. Ge, R. Zhang, R. Pan,
R. Wang, R. J. Chen, R. L. Jin, R. Chen, S. Lu, S. Zhou, S. Chen, S. Ye,
S. Wang, S. Yu, S. Zhou, S. Pan, S. S. Li, S. Zhou, S. Wu, S. Ye, T. Yun, T. Pei,
T. Sun, T. Wang, W. Zeng, W. Zhao, W. Liu, W. Liang, W. Gao, W. Yu,
W. Zhang, W. L. Xiao, W. An, X. Liu, X. Wang, X. Chen, X. Nie, X. Cheng,
X. Liu, X. Xie, X. Liu, X. Yang, X. Li, X. Su, X. Lin, X. Q. Li, X. Jin, X. Shen,
X. Chen, X. Sun, X. Wang, X. Song, X. Zhou, X. Wang, X. Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. Zhang, Y. Xu, Y. Li, Y. Zhao, Y. Sun, Y. Wang,
Y. Yu, Y. Zhang, Y. Shi, Y. Xiong, Y. He, Y. Piao, Y. Wang, Y. Tan, Y. Ma,
Y. Liu, Y. Guo, Y. Ou, Y. Wang, Y. Gong, Y. Zou, Y. He, Y. Xiong, Y. Luo,
Y. You, Y. Liu, Y. Zhou, Y. X. Zhu, Y. Xu, Y. Huang, Y. Li, Y. Zheng, Y. Zhu,
Y. Ma, Y. Tang, Y. Zha, Y. Yan, Z. Z. Ren, Z. Ren, Z. Sha, Z. Fu, Z. Xu, Z. Xie,
Z. Zhang, Z. Hao, Z. Ma, Z. Yan, Z. Wu, Z. Gu, Z. Zhu, Z. Liu, Z. Li, Z. Xie,
Z. Song, Z. Pan, Z. Huang, Z. Xu, Z. Zhang, and Z. Zhang. DeepSeek-R1:
Incentivizing Reasoning Capability in LLMs via Reinforcement Learning, Jan.
2025. URL http://arxiv.org/abs/2501.12948. arXiv:2501.12948 [cs].

33. M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional Neural
Networks on Graphs with Fast Localized Spectral Filtering. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/

04df4d434d481c5bb723be1b6df1ee65-Paper.pdf.

34. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In J. Burstein, C. Do-
ran, and T. Solorio, editors, Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.
doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

35. T. DeVries and G. W. Taylor. Improved Regularization of Convolutional Neural

243

https://arxiv.org/abs/2212.10559v3
http://arxiv.org/abs/2501.12948
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://aclanthology.org/N19-1423

Networks with Cutout, Nov. 2017. URL http://arxiv.org/abs/1708.04552.
arXiv:1708.04552 [cs].

36. J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell.
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recog-
nition. In E. P. Xing and T. Jebara, editors, Proceedings of the 31st Interna-
tional Conference on Machine Learning, volume 32 of Proceedings of Machine
Learning Research, pages 647–655, Bejing, China, June 2014. PMLR. URL
https://proceedings.mlr.press/v32/donahue14.html. Issue: 1.

37. K. Dong, Y. Tian, Z. Guo, Y. Yang, and N. Chawla. FakeEdge: Alleviate
Dataset Shift in Link Prediction. Dec. 2022. URL https://openreview.net/

forum?id=QDN0jSXuvtX.

38. K. Dong, Z. Guo, and N. V. Chawla. Pure Message Passing Can Estimate
Common Neighbor for Link Prediction, Oct. 2023. URL http://arxiv.org/

abs/2309.00976. arXiv:2309.00976 [cs].

39. K. Dong, Z. Guo, and N. V. Chawla. CORE: Data Augmentation for Link
Prediction via Information Bottleneck, Apr. 2024. URL http://arxiv.org/

abs/2404.11032. arXiv:2404.11032 [cs].

40. K. Dong, Z. Guo, and N. V. Chawla. You do not have to train Graph Neural
Networks at all on text-attributed graphs, Apr. 2024. URL http://arxiv.org/

abs/2404.11019. arXiv:2404.11019 [cs].

41. K. Dong, H. Mao, Z. Guo, and N. V. Chawla. Universal Link Predictor By In-
Context Learning on Graphs, Feb. 2024. URL http://arxiv.org/abs/2402.

07738. arXiv:2402.07738 [cs].

42. M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilvasy, P.-E. Mazaré,
M. Lomeli, L. Hosseini, and H. Jégou. The Faiss library. 2024. eprint:
2401.08281.

43. D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams. Convolutional Networks on
Graphs for Learning Molecular Fingerprints. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 28. Curran Associates,
Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/

f9be311e65d81a9ad8150a60844bb94c-Paper.pdf.

44. V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson.
Benchmarking Graph Neural Networks, Dec. 2022. URL http://arxiv.org/

abs/2003.00982. arXiv:2003.00982 [cs].

45. D. Easley, J. Kleinberg, and others. Networks, crowds, and markets: Reasoning
about a highly connected world, volume 1. Cambridge university press Cam-
bridge, 2010.

244

http://arxiv.org/abs/1708.04552
https://proceedings.mlr.press/v32/donahue14.html
https://openreview.net/forum?id=QDN0jSXuvtX
https://openreview.net/forum?id=QDN0jSXuvtX
http://arxiv.org/abs/2309.00976
http://arxiv.org/abs/2309.00976
http://arxiv.org/abs/2404.11032
http://arxiv.org/abs/2404.11032
http://arxiv.org/abs/2404.11019
http://arxiv.org/abs/2404.11019
http://arxiv.org/abs/2402.07738
http://arxiv.org/abs/2402.07738
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
http://arxiv.org/abs/2003.00982
http://arxiv.org/abs/2003.00982

46. P. Erdos. On random graphs. Publicationes mathematicae, 6:290–297, 1959.

47. J. Feng, Y. Chen, F. Li, A. Sarkar, and M. Zhang. How Powerful are K-
hop Message Passing Graph Neural Networks. May 2022. URL https:

//openreview.net/forum?id=nN3aVRQsxGd.

48. J. Feng, Y. Chen, F. Li, A. Sarkar, and M. Zhang. How Powerful are K-hop
Message Passing Graph Neural Networks, Jan. 2023. URL http://arxiv.org/

abs/2205.13328. arXiv:2205.13328 [cs].

49. S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura, and
E. Hovy. A Survey of Data Augmentation Approaches for NLP. In Find-
ings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pages 968–988, Online, Aug. 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.findings-acl.84. URL https://aclanthology.org/

2021.findings-acl.84.

50. M. Fey and J. E. Lenssen. Fast Graph Representation Learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019.

51. M. Fey, W. Hu, K. Huang, J. E. Lenssen, R. Ranjan, J. Robinson,
R. Ying, J. You, and J. Leskovec. Position: Relational Deep Learning
- Graph Representation Learning on Relational Databases. June 2024.
URL https://openreview.net/forum?id=BIMSHniyCP&referrer=%5Bthe%

20profile%20of%20Jan%20Eric%20Lenssen%5D(%2Fprofile%3Fid%3D~Jan_

Eric_Lenssen1).

52. J. Frankle and M. Carbin. The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks. Sept. 2018. URL https://openreview.net/

forum?id=rJl-b3RcF7.

53. F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, and F. Monti.
SIGN: Scalable Inception Graph Neural Networks, Nov. 2020. URL http://

arxiv.org/abs/2004.11198. arXiv:2004.11198 [cs, stat].

54. F. Frasca, B. Bevilacqua, M. M. Bronstein, and H. Maron. Understanding and
Extending Subgraph GNNs by Rethinking Their Symmetries, June 2022. URL
http://arxiv.org/abs/2206.11140. arXiv:2206.11140 [cs].

55. A. Ghasemian, H. Hosseinmardi, A. Galstyan, E. M. Airoldi, and
A. Clauset. Stacking models for nearly optimal link prediction in
complex networks. Proceedings of the National Academy of Sciences,
117(38):23393–23400, 2020. doi: 10.1073/pnas.1914950117. URL
https://www.pnas.org/doi/abs/10.1073/pnas.1914950117. eprint:
https://www.pnas.org/doi/pdf/10.1073/pnas.1914950117.

245

https://openreview.net/forum?id=nN3aVRQsxGd
https://openreview.net/forum?id=nN3aVRQsxGd
http://arxiv.org/abs/2205.13328
http://arxiv.org/abs/2205.13328
https://aclanthology.org/2021.findings-acl.84
https://aclanthology.org/2021.findings-acl.84
https://openreview.net/forum?id=BIMSHniyCP&referrer=%5Bthe%20profile%20of%20Jan%20Eric%20Lenssen%5D(%2Fprofile%3Fid%3D~Jan_Eric_Lenssen1)
https://openreview.net/forum?id=BIMSHniyCP&referrer=%5Bthe%20profile%20of%20Jan%20Eric%20Lenssen%5D(%2Fprofile%3Fid%3D~Jan_Eric_Lenssen1)
https://openreview.net/forum?id=BIMSHniyCP&referrer=%5Bthe%20profile%20of%20Jan%20Eric%20Lenssen%5D(%2Fprofile%3Fid%3D~Jan_Eric_Lenssen1)
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://arxiv.org/abs/2004.11198
http://arxiv.org/abs/2004.11198
http://arxiv.org/abs/2206.11140
https://www.pnas.org/doi/abs/10.1073/pnas.1914950117

56. C. L. Giles, K. D. Bollacker, and S. Lawrence. CiteSeer: An automatic citation
indexing system. In Proceedings of the third ACM conference on Digital libraries,
pages 89–98, 1998.

57. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural
Message Passing for Quantum Chemistry. CoRR, abs/1704.01212, 2017. URL
http://arxiv.org/abs/1704.01212. arXiv: 1704.01212.

58. Z. Guo, W. Shiao, S. Zhang, Y. Liu, N. Chawla, N. Shah, and T. Zhao. Linkless
Link Prediction via Relational Distillation. arXiv preprint arXiv:2210.05801,
2022.

59. W. L. Hamilton, R. Ying, and J. Leskovec. Inductive Representation Learning
on Large Graphs. arXiv:1706.02216 [cs, stat], Sept. 2018. URL http://arxiv.

org/abs/1706.02216. arXiv: 1706.02216.

60. P. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps.
Social Networks, 5:109–137, 1983. URL https://api.semanticscholar.org/

CorpusID:34098453.

61. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, Jan. 1989. ISSN 0893-
6080. doi: 10.1016/0893-6080(89)90020-8. URL https://www.sciencedirect.

com/science/article/pii/0893608089900208.

62. W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec. Open Graph Benchmark: Datasets for Machine Learning on
Graphs. arXiv:2005.00687 [cs, stat], Feb. 2021. URL http://arxiv.org/abs/

2005.00687. arXiv: 2005.00687.

63. Y. Hu, X. Wang, Z. Lin, P. Li, and M. Zhang. Two-Dimensional Weisfeiler-
Lehman Graph Neural Networks for Link Prediction, June 2022. URL http:

//arxiv.org/abs/2206.09567. arXiv:2206.09567 [cs].

64. Q. Huang, H. He, A. Singh, S.-N. Lim, and A. Benson. Combining Label
Propagation and Simple Models out-performs Graph Neural Networks. Oct.
2020. URL https://openreview.net/forum?id=8E1-f3VhX1o.

65. Q. Huang, H. Ren, P. Chen, G. Kržmanc, D. Zeng, P. Liang, and J. Leskovec.
PRODIGY: Enabling In-context Learning Over Graphs. Nov. 2023. URL
https://openreview.net/forum?id=pLwYhNNnoR.

66. T. Huang, T. Chen, M. Fang, V. Menkovski, J. Zhao, L. Yin, Y. Pei, D. C.
Mocanu, Z. Wang, M. Pechenizkiy, and S. Liu. You Can Have Better Graph
Neural Networks by Not Training Weights at All: Finding Untrained GNNs
Tickets. Nov. 2022. URL https://openreview.net/forum?id=dF6aEW3_62O.

246

http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
https://api.semanticscholar.org/CorpusID:34098453
https://api.semanticscholar.org/CorpusID:34098453
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
http://arxiv.org/abs/2005.00687
http://arxiv.org/abs/2005.00687
http://arxiv.org/abs/2206.09567
http://arxiv.org/abs/2206.09567
https://openreview.net/forum?id=8E1-f3VhX1o
https://openreview.net/forum?id=pLwYhNNnoR
https://openreview.net/forum?id=dF6aEW3_62O

67. E. Hwang, V. Thost, S. S. Dasgupta, and T. Ma. An Analysis of Virtual Nodes
in Graph Neural Networks for Link Prediction (Extended Abstract). Nov. 2022.
URL https://openreview.net/forum?id=dI6KBKNRp7.

68. K. Irie, R. Csordás, and J. Schmidhuber. The Dual Form of Neural Net-
works Revisited: Connecting Test Time Predictions to Training Patterns via
Spotlights of Attention, June 2022. URL http://arxiv.org/abs/2202.05798.
arXiv:2202.05798 [cs].

69. P. Jaccard. The Distribution of the Flora in the Alpine Zone.1.
New Phytologist, 11(2):37–50, 1912. ISSN 1469-8137. doi:
10.1111/j.1469-8137.1912.tb05611.x. URL https://onlinelibrary.

wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1912.tb05611.x.

70. E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with Gumbel-
Softmax. Apr. 2023. URL https://openreview.net/forum?id=rkE3y85ee.

71. A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l.
Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A.
Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang, T. Lacroix, and W. E.
Sayed. Mistral 7B, Oct. 2023. URL http://arxiv.org/abs/2310.06825.
arXiv:2310.06825 [cs].

72. J. Jin, Y. Wang, W. Zhang, Q. Gan, X. Song, Y. Yu, Z. Zhang, and D. Wipf. Re-
fined Edge Usage of Graph Neural Networks for Edge Prediction. Dec. 2022. doi:
10.48550/arXiv.2212.12970. URL https://arxiv.org/abs/2212.12970v1.

73. W. Johnson and J. Lindenstrauss. Extensions of Lipschitz maps into a Hilbert
space. Contemporary Mathematics, 26:189–206, Jan. 1984. ISSN 9780821850305.
doi: 10.1090/conm/026/737400.

74. P. C. Kainen. Orthogonal dimension and tolerance. Unpublished report, Wash-
ington DC: Industrial Math, 1992.

75. P. C. Kainen and V. Kurkova. Quasiorthogonal dimension. In Beyond traditional
probabilistic data processing techniques: Interval, fuzzy etc. Methods and their
applications, pages 615–629. Springer, 2020.

76. P. C. Kainen and V. Kůrková. Quasiorthogonal dimension of euclidean
spaces. Applied Mathematics Letters, 6(3):7–10, May 1993. ISSN 0893-9659.
doi: 10.1016/0893-9659(93)90023-G. URL https://www.sciencedirect.com/

science/article/pii/089396599390023G.

77. J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei. Scaling Laws for Neu-
ral Language Models, Jan. 2020. URL http://arxiv.org/abs/2001.08361.
arXiv:2001.08361 [cs].

247

https://openreview.net/forum?id=dI6KBKNRp7
http://arxiv.org/abs/2202.05798
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://openreview.net/forum?id=rkE3y85ee
http://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2212.12970v1
https://www.sciencedirect.com/science/article/pii/089396599390023G
https://www.sciencedirect.com/science/article/pii/089396599390023G
http://arxiv.org/abs/2001.08361

78. L. Katz. A new status index derived from sociometric analysis. Psychometrika,
18(1):39–43, Mar. 1953. ISSN 1860-0980. doi: 10.1007/BF02289026. URL
https://doi.org/10.1007/BF02289026.

79. D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes.
arXiv:1312.6114 [cs, stat], May 2014. URL http://arxiv.org/abs/1312.

6114. arXiv: 1312.6114.

80. D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling. Semi-Supervised
Learning with Deep Generative Models, Oct. 2014. URL http://arxiv.org/

abs/1406.5298. arXiv:1406.5298 [cs, stat].

81. T. N. Kipf and M. Welling. Variational Graph Auto-Encoders, 2016. eprint:
1611.07308.

82. T. N. Kipf and M. Welling. Semi-Supervised Classification with Graph Con-
volutional Networks. arXiv:1609.02907 [cs, stat], Feb. 2017. URL http:

//arxiv.org/abs/1609.02907. arXiv: 1609.02907.

83. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,
S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment Any-
thing, Apr. 2023. URL http://arxiv.org/abs/2304.02643. arXiv:2304.02643
[cs].

84. J. Klicpera, S. Weißenberger, and S. Günnemann. Diffusion Improves Graph
Learning. arXiv:1911.05485 [cs, stat], Dec. 2019. URL http://arxiv.org/

abs/1911.05485. arXiv: 1911.05485.

85. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009. Publisher: IEEE.

86. D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang, R. L.
Priol, and A. Courville. Out-of-Distribution Generalization via Risk Extrapo-
lation (REx), Mar. 2020. URL https://arxiv.org/abs/2003.00688v5.

87. A. Kumar, S. S. Singh, K. Singh, and B. Biswas. Link prediction techniques,
applications, and performance: A survey. Physica A: Statistical Mechanics and
its Applications, 553:124289, Sept. 2020. ISSN 0378-4371. doi: 10.1016/j.physa.
2020.124289. URL https://www.sciencedirect.com/science/article/pii/

S0378437120300856.

88. C. Lesner, A. Ran, M. Rukonic, and W. Wang. Large Scale Personalized
Categorization of Financial Transactions. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 33(01):9365–9372, July 2019. ISSN 2374-3468.
doi: 10.1609/aaai.v33i01.33019365. URL https://ojs.aaai.org/index.php/

AAAI/article/view/4984. Number: 01.

89. L. Li and M. Spratling. Data Augmentation Alone Can Improve Adversarial
Training, Jan. 2023. URL https://arxiv.org/abs/2301.09879v1.

248

https://doi.org/10.1007/BF02289026
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1406.5298
http://arxiv.org/abs/1406.5298
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2304.02643
http://arxiv.org/abs/1911.05485
http://arxiv.org/abs/1911.05485
https://arxiv.org/abs/2003.00688v5
https://www.sciencedirect.com/science/article/pii/S0378437120300856
https://www.sciencedirect.com/science/article/pii/S0378437120300856
https://ojs.aaai.org/index.php/AAAI/article/view/4984
https://ojs.aaai.org/index.php/AAAI/article/view/4984
https://arxiv.org/abs/2301.09879v1

90. P. Li, Y. Wang, H. Wang, and J. Leskovec. Distance Encoding: Design Prov-
ably More Powerful Neural Networks for Graph Representation Learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 4465–
4478. Curran Associates, Inc., 2020. URL https://proceedings.neurips.

cc/paper/2020/file/2f73168bf3656f697507752ec592c437-Paper.pdf.

91. D. Liben-Nowell and J. Kleinberg. The link prediction problem for social net-
works. In Proceedings of the twelfth international conference on Information
and knowledge management, CIKM ’03, pages 556–559, New York, NY, USA,
Nov. 2003. Association for Computing Machinery. ISBN 978-1-58113-723-1. doi:
10.1145/956863.956972. URL http://doi.org/10.1145/956863.956972.

92. J. Liu, L. Pei, Y. Sun, H. Simpson, J. Lu, and N. Ho. Categorization of Fi-
nancial Transactions in QuickBooks. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, KDD ’21, pages 3299–
3307, New York, NY, USA, Aug. 2021. Association for Computing Machin-
ery. ISBN 978-1-4503-8332-5. doi: 10.1145/3447548.3467100. URL https:

//doi.org/10.1145/3447548.3467100.

93. L. Lu and T. Zhou. Link Prediction in Complex Networks: A Survey. Physica A:
Statistical Mechanics and its Applications, 390(6):1150–1170, Mar. 2011. ISSN
03784371. doi: 10.1016/j.physa.2010.11.027. URL http://arxiv.org/abs/

1010.0725. arXiv:1010.0725 [physics].

94. Y. Luo, M. McThrow, W. Y. Au, T. Komikado, K. Uchino, K. Maruhashi, and
S. Ji. Automated Data Augmentations for Graph Classification, Feb. 2023. URL
http://arxiv.org/abs/2202.13248. arXiv:2202.13248 [cs].

95. M.-T. Luong, H. Pham, and C. D. Manning. Effective Approaches to Attention-
based Neural Machine Translation, 2015. URL https://arxiv.org/abs/1508.

04025.

96. C. J. Maddison, A. Mnih, and Y. W. Teh. The Concrete Distribution: A
Continuous Relaxation of Discrete Random Variables. Apr. 2023. URL https:

//openreview.net/forum?id=S1jE5L5gl.

97. H. Mao, J. Li, H. Shomer, B. Li, W. Fan, Y. Ma, T. Zhao, N. Shah, and
J. Tang. Revisiting Link Prediction: A Data Perspective, Oct. 2023. URL
http://arxiv.org/abs/2310.00793. arXiv:2310.00793 [cs].

98. H. Mao, Z. Chen, W. Tang, J. Zhao, Y. Ma, T. Zhao, N. Shah, M. Galkin,
and J. Tang. Position: graph foundation models are already here. In Proceed-
ings of the 41st International Conference on Machine Learning, volume 235 of
ICML’24, pages 34670–34692, Vienna, Austria, July 2024. JMLR.org.

249

https://proceedings.neurips.cc/paper/2020/file/2f73168bf3656f697507752ec592c437-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/2f73168bf3656f697507752ec592c437-Paper.pdf
http://doi.org/10.1145/956863.956972
https://doi.org/10.1145/3447548.3467100
https://doi.org/10.1145/3447548.3467100
http://arxiv.org/abs/1010.0725
http://arxiv.org/abs/1010.0725
http://arxiv.org/abs/2202.13248
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
http://arxiv.org/abs/2310.00793

99. H. Mao, G. Liu, Y. Ma, R. Wang, and J. Tang. A Data Generation Perspective
to the Mechanism of In-Context Learning, Feb. 2024. URL http://arxiv.org/

abs/2402.02212. arXiv:2402.02212 [cs].

100. H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably Powerful
Graph Networks. arXiv:1905.11136 [cs, stat], June 2020. URL http://arxiv.

org/abs/1905.11136. arXiv: 1905.11136.

101. S. Maskey, R. Levie, Y. Lee, and G. Kutyniok. Generalization Analysis of
Message Passing Neural Networks on Large Random Graphs, 2022. URL https:

//arxiv.org/abs/2202.00645.

102. A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval,
3(2):127–163, 2000. Publisher: Springer.

103. S. Miao, M. Liu, and P. Li. Interpretable and Generalizable Graph Learning
via Stochastic Attention Mechanism, June 2022. URL http://arxiv.org/abs/

2201.12987. arXiv:2201.12987 [cs].

104. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
Representations of Words and Phrases and their Compositionality. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems, volume 26. Curran
Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/

file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

105. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat,
M. Sheffer, and U. Alon. Superfamilies of Evolved and Designed Networks.
Science, 303(5663):1538–1542, 2004. doi: 10.1126/science.1089167. URL
https://www.science.org/doi/abs/10.1126/science.1089167. eprint:
https://www.science.org/doi/pdf/10.1126/science.1089167.

106. S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and
L. Zettlemoyer. Rethinking the Role of Demonstrations: What Makes In-
Context Learning Work?, Oct. 2022. URL http://arxiv.org/abs/2202.

12837. arXiv:2202.12837 [cs].

107. J. G. Moreno-Torres, T. Raeder, R. Alaiz-RodŕıGuez, N. V. Chawla, and F. Her-
rera. A unifying view on dataset shift in classification. Pattern Recognition, 45
(1):521–530, Jan. 2012. ISSN 0031-3203. doi: 10.1016/j.patcog.2011.06.019.
URL http://doi.org/10.1016/j.patcog.2011.06.019.

108. C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and
M. Grohe. Weisfeiler and Leman Go Neural: Higher-order Graph Neural Net-
works, Nov. 2021. URL http://arxiv.org/abs/1810.02244. arXiv:1810.02244
[cs, stat].

250

http://arxiv.org/abs/2402.02212
http://arxiv.org/abs/2402.02212
http://arxiv.org/abs/1905.11136
http://arxiv.org/abs/1905.11136
https://arxiv.org/abs/2202.00645
https://arxiv.org/abs/2202.00645
http://arxiv.org/abs/2201.12987
http://arxiv.org/abs/2201.12987
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://www.science.org/doi/abs/10.1126/science.1089167
http://arxiv.org/abs/2202.12837
http://arxiv.org/abs/2202.12837
http://doi.org/10.1016/j.patcog.2011.06.019
http://arxiv.org/abs/1810.02244

109. G. Namata, B. London, L. Getoor, and B. Huang. Query-driven active surveying
for collective classification. In 10th International Workshop on Mining and
Learning with Graphs, volume 8, page 1, 2012.

110. M. E. Newman. Finding community structure in networks using the eigenvectors
of matrices. Physical review E, 74(3):036104, 2006. Publisher: APS.

111. M. E. J. Newman. Modularity and community structure in net-
works. Proceedings of the National Academy of Sciences, 103
(23):8577–8582, 2006. doi: 10.1073/pnas.0601602103. URL
https://www.pnas.org/doi/abs/10.1073/pnas.0601602103. eprint:
https://www.pnas.org/doi/pdf/10.1073/pnas.0601602103.

112. Z. Niu, G. Zhong, and H. Yu. A review on the attention mechanism of
deep learning. Neurocomputing, 452:48–62, Sept. 2021. ISSN 0925-2312.
doi: 10.1016/j.neucom.2021.03.091. URL https://www.sciencedirect.com/

science/article/pii/S092523122100477X.

113. H. NT and T. Maehara. Revisiting Graph Neural Networks: All We Have
is Low-Pass Filters, May 2019. URL http://arxiv.org/abs/1905.09550.
arXiv:1905.09550 [cs, math, stat].

114. I. Nunes, M. Heddes, P. Vergés, D. Abraham, A. Veidenbaum, A. Nicolau, and
T. Givargis. DotHash: Estimating Set Similarity Metrics for Link Prediction
and Document Deduplication, May 2023. URL http://arxiv.org/abs/2305.

17310. arXiv:2305.17310 [cs].

115. OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, R. Avila, I. Babuschkin,
S. Balaji, V. Balcom, P. Baltescu, H. Bao, M. Bavarian, J. Belgum, I. Bello,
J. Berdine, G. Bernadett-Shapiro, C. Berner, L. Bogdonoff, O. Boiko, M. Boyd,
A.-L. Brakman, G. Brockman, T. Brooks, M. Brundage, K. Button, T. Cai,
R. Campbell, A. Cann, B. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang,
F. Chantzis, D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess, C. Cho,
C. Chu, H. W. Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux, T. De-
gry, N. Deutsch, D. Deville, A. Dhar, D. Dohan, S. Dowling, S. Dunning,
A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus, N. Felix, S. P. Fish-
man, J. Forte, I. Fulford, L. Gao, E. Georges, C. Gibson, V. Goel, T. Gogi-
neni, G. Goh, R. Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray, R. Greene,
J. Gross, S. S. Gu, Y. Guo, C. Hallacy, J. Han, J. Harris, Y. He, M. Heaton,
J. Heidecke, C. Hesse, A. Hickey, W. Hickey, P. Hoeschele, B. Houghton, K. Hsu,
S. Hu, X. Hu, J. Huizinga, S. Jain, S. Jain, J. Jang, A. Jiang, R. Jiang, H. Jin,
D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, L. Kaiser, A. Kamali, I. Kan-
itscheider, N. S. Keskar, T. Khan, L. Kilpatrick, J. W. Kim, C. Kim, Y. Kim,
J. H. Kirchner, J. Kiros, M. Knight, D. Kokotajlo, L. Kondraciuk, A. Kondrich,
A. Konstantinidis, K. Kosic, G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee,
J. Leike, J. Leung, D. Levy, C. M. Li, R. Lim, M. Lin, S. Lin, M. Litwin,

251

https://www.pnas.org/doi/abs/10.1073/pnas.0601602103
https://www.sciencedirect.com/science/article/pii/S092523122100477X
https://www.sciencedirect.com/science/article/pii/S092523122100477X
http://arxiv.org/abs/1905.09550
http://arxiv.org/abs/2305.17310
http://arxiv.org/abs/2305.17310

T. Lopez, R. Lowe, P. Lue, A. Makanju, K. Malfacini, S. Manning, T. Markov,
Y. Markovski, B. Martin, K. Mayer, A. Mayne, B. McGrew, S. M. McKin-
ney, C. McLeavey, P. McMillan, J. McNeil, D. Medina, A. Mehta, J. Menick,
L. Metz, A. Mishchenko, P. Mishkin, V. Monaco, E. Morikawa, D. Mossing,
T. Mu, M. Murati, O. Murk, D. Mély, A. Nair, R. Nakano, R. Nayak, A. Nee-
lakantan, R. Ngo, H. Noh, L. Ouyang, C. O’Keefe, J. Pachocki, A. Paino,
J. Palermo, A. Pantuliano, G. Parascandolo, J. Parish, E. Parparita, A. Pas-
sos, M. Pavlov, A. Peng, A. Perelman, F. d. A. B. Peres, M. Petrov, H. P.
d. O. Pinto, Michael, Pokorny, M. Pokrass, V. H. Pong, T. Powell, A. Power,
B. Power, E. Proehl, R. Puri, A. Radford, J. Rae, A. Ramesh, C. Raymond,
F. Real, K. Rimbach, C. Ross, B. Rotsted, H. Roussez, N. Ryder, M. Saltarelli,
T. Sanders, S. Santurkar, G. Sastry, H. Schmidt, D. Schnurr, J. Schulman,
D. Selsam, K. Sheppard, T. Sherbakov, J. Shieh, S. Shoker, P. Shyam, S. Sidor,
E. Sigler, M. Simens, J. Sitkin, K. Slama, I. Sohl, B. Sokolowsky, Y. Song,
N. Staudacher, F. P. Such, N. Summers, I. Sutskever, J. Tang, N. Tezak,
M. B. Thompson, P. Tillet, A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley,
J. Tworek, J. F. C. Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright,
J. J. Wang, A. Wang, B. Wang, J. Ward, J. Wei, C. J. Weinmann, A. Welihinda,
P. Welinder, J. Weng, L. Weng, M. Wiethoff, D. Willner, C. Winter, S. Wolrich,
H. Wong, L. Workman, S. Wu, J. Wu, M. Wu, K. Xiao, T. Xu, S. Yoo, K. Yu,
Q. Yuan, W. Zaremba, R. Zellers, C. Zhang, M. Zhang, S. Zhao, T. Zheng,
J. Zhuang, W. Zhuk, and B. Zoph. GPT-4 Technical Report, Mar. 2024. URL
http://arxiv.org/abs/2303.08774. arXiv:2303.08774 [cs].

116. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation
Ranking : Bringing Order to the Web. In The Web Conference, 1999. URL
https://api.semanticscholar.org/CorpusID:1508503.

117. J. Pan, T. Gao, H. Chen, and D. Chen. What In-Context Learning ”Learns” In-
Context: Disentangling Task Recognition and Task Learning, May 2023. URL
http://arxiv.org/abs/2305.09731. arXiv:2305.09731 [cs].

118. L. Pan, C. Shi, and I. Dokmanić. Neural Link Prediction with Walk Pooling.
In International Conference on Learning Representations, 2022. URL https:

//openreview.net/forum?id=CCu6RcUMwK0.

119. P. Panda, A. Sengupta, and K. Roy. Conditional deep learning for energy-
efficient and enhanced pattern recognition. In Proceedings of the 2016 Confer-
ence on Design, Automation & Test in Europe, DATE ’16, pages 475–480, San
Jose, CA, USA, Mar. 2016. EDA Consortium. ISBN 978-3-9815370-6-2.

120. P. A. Papp, K. Martinkus, L. Faber, and R. Wattenhofer. DropGNN: Random
Dropouts Increase the Expressiveness of Graph Neural Networks, Nov. 2021.
URL http://arxiv.org/abs/2111.06283. arXiv:2111.06283 [cs].

121. P. M. Phothilimthana, S. Abu-El-Haija, K. Cao, B. Fatemi, M. Burrows,
C. Mendis, and B. Perozzi. TpuGraphs: A Performance Prediction Dataset on

252

http://arxiv.org/abs/2303.08774
https://api.semanticscholar.org/CorpusID:1508503
http://arxiv.org/abs/2305.09731
https://openreview.net/forum?id=CCu6RcUMwK0
https://openreview.net/forum?id=CCu6RcUMwK0
http://arxiv.org/abs/2111.06283

Large Tensor Computational Graphs. Nov. 2023. URL https://openreview.

net/forum?id=plAix1NxhU.

122. S. Purchase, Y. Zhao, and R. D. Mullins. Revisiting Embeddings for Graph Neu-
ral Networks. Nov. 2022. URL https://openreview.net/forum?id=Ri2dzVt_

a1h.

123. J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, N. D. Lawrence, M. I.
Jordan, and T. G. Dietterich, editors. Dataset Shift in Machine Learning. Neural
Information Processing series. MIT Press, Cambridge, MA, USA, Dec. 2008.
ISBN 978-0-262-17005-5.

124. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning Transfer-
able Visual Models From Natural Language Supervision. In Proceedings of the
38th International Conference on Machine Learning, pages 8748–8763. PMLR,
July 2021. URL https://proceedings.mlr.press/v139/radford21a.html.
ISSN: 2640-3498.

125. N. Reimers and I. Gurevych. Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks. In K. Inui, J. Jiang, V. Ng, and X. Wan, editors,
Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3982–3992, Hong Kong, China, Nov. 2019.
Association for Computational Linguistics. doi: 10.18653/v1/D19-1410. URL
https://aclanthology.org/D19-1410.

126. J. Robinson, R. Ranjan, W. Hu, K. Huang, J. Han, A. Dobles, M. Fey, J. E.
Lenssen, Y. Yuan, Z. Zhang, X. He, and J. Leskovec. RelBench: A Benchmark
for Deep Learning on Relational Databases, July 2024. URL http://arxiv.

org/abs/2407.20060. arXiv:2407.20060 [cs].

127. Y. Rong, W. Huang, T. Xu, and J. Huang. DropEdge: Towards Deep Graph
Convolutional Networks on Node Classification. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=

Hkx1qkrKPr.

128. B. Rozemberczki, C. Allen, and R. Sarkar. Multi-Scale attributed node em-
bedding. Journal of Complex Networks, 9(2):cnab014, May 2021. ISSN
2051-1329. doi: 10.1093/comnet/cnab014. URL https://doi.org/10.

1093/comnet/cnab014. eprint: https://academic.oup.com/comnet/article-
pdf/9/2/cnab014/40435146/cnab014.pdf.

129. R. Sato, M. Yamada, and H. Kashima. Random Features Strengthen Graph
Neural Networks, 2021. eprint: 2002.03155.

130. M. Schuster and K. Nakajima. Japanese and Korean voice search. In 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),

253

https://openreview.net/forum?id=plAix1NxhU
https://openreview.net/forum?id=plAix1NxhU
https://openreview.net/forum?id=Ri2dzVt_a1h
https://openreview.net/forum?id=Ri2dzVt_a1h
https://proceedings.mlr.press/v139/radford21a.html
https://aclanthology.org/D19-1410
http://arxiv.org/abs/2407.20060
http://arxiv.org/abs/2407.20060
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr
https://doi.org/10.1093/comnet/cnab014
https://doi.org/10.1093/comnet/cnab014

pages 5149–5152, Mar. 2012. doi: 10.1109/ICASSP.2012.6289079. URL https:

//ieeexplore-ieee-org.proxy.library.nd.edu/document/6289079. ISSN:
2379-190X.

131. O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann. Pitfalls of Graph
Neural Network Evaluation, June 2019. URL http://arxiv.org/abs/1811.

05868. arXiv:1811.05868 [cs, stat].

132. N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M.
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Re-
search, 12(9), 2011.

133. C. Shorten and T. M. Khoshgoftaar. A survey on Image Data Augmenta-
tion for Deep Learning. Journal of Big Data, 6(1):60, July 2019. ISSN
2196-1115. doi: 10.1186/s40537-019-0197-0. URL https://doi.org/10.1186/

s40537-019-0197-0.

134. A. Singh, Q. Huang, S. L. Huang, O. Bhalerao, H. He, S.-N. Lim, and A. R.
Benson. Edge Proposal Sets for Link Prediction, June 2021. URL http://

arxiv.org/abs/2106.15810. arXiv:2106.15810 [cs].

135. K. K. Singh, H. Yu, A. Sarmasi, G. Pradeep, and Y. J. Lee. Hide-and-Seek: A
Data Augmentation Technique for Weakly-Supervised Localization and Beyond,
Nov. 2018. URL http://arxiv.org/abs/1811.02545. arXiv:1811.02545 [cs].

136. N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with
Rocketfuel. ACM SIGCOMM Computer Communication Review, 32(4):133–
145, 2002. Publisher: ACM New York, NY, USA.

137. B. Srinivasan and B. Ribeiro. On the Equivalence between Positional Node
Embeddings and Structural Graph Representations. In International Conference
on Learning Representations, 2020. URL https://openreview.net/forum?id=

SJxzFySKwH.

138. Q. Sun, J. Li, H. Peng, J. Wu, X. Fu, C. Ji, and P. S. Yu. Graph Structure
Learning with Variational Information Bottleneck, Dec. 2021. URL http://

arxiv.org/abs/2112.08903. arXiv:2112.08903 [cs].

139. S. Sun, Z. Cao, H. Zhu, and J. Zhao. A Survey of Optimization Methods from a
Machine Learning Perspective, Oct. 2019. URL http://arxiv.org/abs/1906.

06821. arXiv:1906.06821 [cs, math, stat].

140. S. Suresh, P. Li, C. Hao, and J. Neville. Adversarial Graph Augmentation to
Improve Graph Contrastive Learning, Nov. 2021. URL http://arxiv.org/

abs/2106.05819. arXiv:2106.05819 [cs].

141. D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas,
M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen, and C. v.

254

https://ieeexplore-ieee-org.proxy.library.nd.edu/document/6289079
https://ieeexplore-ieee-org.proxy.library.nd.edu/document/6289079
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
http://arxiv.org/abs/2106.15810
http://arxiv.org/abs/2106.15810
http://arxiv.org/abs/1811.02545
https://openreview.net/forum?id=SJxzFySKwH
https://openreview.net/forum?id=SJxzFySKwH
http://arxiv.org/abs/2112.08903
http://arxiv.org/abs/2112.08903
http://arxiv.org/abs/1906.06821
http://arxiv.org/abs/1906.06821
http://arxiv.org/abs/2106.05819
http://arxiv.org/abs/2106.05819

Mering. STRING v11: protein-protein association networks with increased cov-
erage, supporting functional discovery in genome-wide experimental datasets.
Nucleic Acids Research, 47(D1):D607–D613, Jan. 2019. ISSN 1362-4962. doi:
10.1093/nar/gky1131.

142. N. Tishby and N. Zaslavsky. Deep learning and the information bottleneck
principle. In 2015 IEEE Information Theory Workshop (ITW), pages 1–5, Apr.
2015. doi: 10.1109/ITW.2015.7133169.

143. N. Tishby, F. C. Pereira, and W. Bialek. The information bottle-
neck method, Apr. 2000. URL http://arxiv.org/abs/physics/0004057.
arXiv:physics/0004057.

144. J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bron-
stein. Understanding over-squashing and bottlenecks on graphs via curvature.
arXiv:2111.14522 [cs, stat], Nov. 2021. URL http://arxiv.org/abs/2111.

14522. arXiv: 2111.14522.

145. J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bron-
stein. Understanding over-squashing and bottlenecks on graphs via curvature.
arXiv:2111.14522 [cs, stat], Mar. 2022. URL http://arxiv.org/abs/2111.

14522. arXiv: 2111.14522.

146. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bash-
lykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer,
M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao,
V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas,
V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux,
T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov,
P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Sal-
adi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang,
R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan,
M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom.
Llama 2: Open Foundation and Fine-Tuned Chat Models, July 2023. URL
http://arxiv.org/abs/2307.09288. arXiv:2307.09288 [cs].

147. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is All you Need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://papers.nips.cc/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

148. P. Veličković. Everything is connected: Graph neural networks. Current Opinion
in Structural Biology, 79:102538, Apr. 2023. ISSN 0959-440X. doi: 10.1016/j.
sbi.2023.102538. URL https://www.sciencedirect.com/science/article/

pii/S0959440X2300012X.

255

http://arxiv.org/abs/physics/0004057
http://arxiv.org/abs/2111.14522
http://arxiv.org/abs/2111.14522
http://arxiv.org/abs/2111.14522
http://arxiv.org/abs/2111.14522
http://arxiv.org/abs/2307.09288
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.sciencedirect.com/science/article/pii/S0959440X2300012X
https://www.sciencedirect.com/science/article/pii/S0959440X2300012X

149. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio.
Graph Attention Networks. arXiv:1710.10903 [cs, stat], Feb. 2018. URL http:

//arxiv.org/abs/1710.10903. arXiv: 1710.10903.

150. C. Von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields, and
P. Bork. Comparative assessment of large-scale data sets of protein–protein
interactions. Nature, 417(6887):399–403, 2002. Publisher: Nature Publishing
Group.

151. K. Wang, V. Muthukumar, and C. Thrampoulidis. Benign Overfitting in Multi-
class Classification: All Roads Lead to Interpolation, 2023. eprint: 2106.10865.

152. L. Wang, M. Zhang, Z. Jia, Q. Li, C. Bao, K. Ma, J. Zhu, and Y. Zhong. AFEC:
Active Forgetting of Negative Transfer in Continual Learning, Nov. 2021. URL
http://arxiv.org/abs/2110.12187. arXiv:2110.12187 [cs].

153. L. Wang, L. Li, D. Dai, D. Chen, H. Zhou, F. Meng, J. Zhou, and X. Sun.
Label Words are Anchors: An Information Flow Perspective for Understanding
In-Context Learning, Dec. 2023. URL http://arxiv.org/abs/2305.14160.
arXiv:2305.14160 [cs].

154. X. Wang and M. Zhang. How Powerful are Spectral Graph Neural Networks. In
K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors,
Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 23341–23362. PMLR,
July 2022. URL https://proceedings.mlr.press/v162/wang22am.html.

155. X. Wang, H. Yang, and M. Zhang. Neural Common Neighbor with Comple-
tion for Link Prediction, Feb. 2023. URL http://arxiv.org/abs/2302.00890.
arXiv:2302.00890 [cs].

156. Y. Wang, W. Wang, Y. Liang, Y. Cai, J. Liu, and B. Hooi. NodeAug: Semi-
Supervised Node Classification with Data Augmentation. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’20, pages 207–217, New York, NY, USA, Aug. 2020. Association
for Computing Machinery. ISBN 978-1-4503-7998-4. doi: 10.1145/3394486.
3403063. URL https://doi.org/10.1145/3394486.3403063.

157. Z. Wang, Y. Zhou, L. Hong, Y. Zou, H. Su, and S. Chen. Pairwise Learning
for Neural Link Prediction. arXiv:2112.02936 [cs], Jan. 2022. URL http:

//arxiv.org/abs/2112.02936. arXiv: 2112.02936.

158. D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ net-
works. Nature, 393:440–442, 1998. URL https://api.semanticscholar.org/

CorpusID:3034643.

159. J. Wei, J. Wei, Y. Tay, D. Tran, A. Webson, Y. Lu, X. Chen, H. Liu, D. Huang,
D. Zhou, and T. Ma. Larger language models do in-context learning differently,
Mar. 2023. URL http://arxiv.org/abs/2303.03846. arXiv:2303.03846 [cs].

256

http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2110.12187
http://arxiv.org/abs/2305.14160
https://proceedings.mlr.press/v162/wang22am.html
http://arxiv.org/abs/2302.00890
https://doi.org/10.1145/3394486.3403063
http://arxiv.org/abs/2112.02936
http://arxiv.org/abs/2112.02936
https://api.semanticscholar.org/CorpusID:3034643
https://api.semanticscholar.org/CorpusID:3034643
http://arxiv.org/abs/2303.03846

160. B. Weisfeiler and A. Leman. The reduction of a graph to canonical form and
the algebra which appears therein. NTI, Series, 2(9):12–16, 1968.

161. F. Wu, T. Zhang, A. H. d. Souza Jr., C. Fifty, T. Yu, and K. Q. Weinberger.
Simplifying Graph Convolutional Networks. arXiv:1902.07153 [cs, stat], June
2019. URL http://arxiv.org/abs/1902.07153. arXiv: 1902.07153.

162. Q. Wu, H. Zhang, J. Yan, and D. Wipf. Handling Distribution Shifts on Graphs:
An Invariance Perspective. May 2022. URL https://openreview.net/forum?

id=FQOC5u-1egI.

163. T. Wu, H. Ren, P. Li, and J. Leskovec. Graph Information Bottleneck, Oct.
2020. URL http://arxiv.org/abs/2010.12811. arXiv:2010.12811 [cs, stat].

164. Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu,
L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian,
N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals,
G. Corrado, M. Hughes, and J. Dean. Google’s Neural Machine Translation
System: Bridging the Gap between Human and Machine Translation, Oct. 2016.
URL http://arxiv.org/abs/1609.08144. arXiv:1609.08144 [cs].

165. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A Comprehensive
Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, Jan. 2021. ISSN 2162-237X, 2162-2388. doi: 10.
1109/TNNLS.2020.2978386. URL http://arxiv.org/abs/1901.00596. arXiv:
1901.00596.

166. Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le. Unsupervised Data
Augmentation for Consistency Training, Nov. 2020. URL http://arxiv.org/

abs/1904.12848. arXiv:1904.12848 [cs, stat].

167. K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How Powerful are Graph Neural
Networks? CoRR, abs/1810.00826, 2018. URL http://arxiv.org/abs/1810.

00826. arXiv: 1810.00826.

168. Y. Yang, R. N. Lichtenwalter, and N. V. Chawla. Evaluating link prediction
methods. Knowledge and Information Systems, 45(3):751–782, Dec. 2015. ISSN
0219-3116. doi: 10.1007/s10115-014-0789-0. URL https://doi.org/10.1007/

s10115-014-0789-0.

169. Z. Yang, W. Cohen, and R. Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages
40–48. PMLR, 2016.

170. G. Yehudai, E. Fetaya, E. Meirom, G. Chechik, and H. Maron. From Local
Structures to Size Generalization in Graph Neural Networks, July 2021. URL
http://arxiv.org/abs/2010.08853. arXiv:2010.08853 [cs, stat].

257

http://arxiv.org/abs/1902.07153
https://openreview.net/forum?id=FQOC5u-1egI
https://openreview.net/forum?id=FQOC5u-1egI
http://arxiv.org/abs/2010.12811
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1904.12848
http://arxiv.org/abs/1904.12848
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
https://doi.org/10.1007/s10115-014-0789-0
https://doi.org/10.1007/s10115-014-0789-0
http://arxiv.org/abs/2010.08853

171. H. Yin, M. Zhang, Y. Wang, J. Wang, and P. Li. Algorithm and System Co-
design for Efficient Subgraph-based Graph Representation Learning. Proceed-
ings of the VLDB Endowment, 15(11):2788–2796, July 2022. ISSN 2150-8097.
doi: 10.14778/3551793.3551831. URL http://arxiv.org/abs/2202.13538.
arXiv:2202.13538 [cs].

172. R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec.
Graph Convolutional Neural Networks for Web-Scale Recommender Systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, pages 974–983, New York, NY, USA, July
2018. Association for Computing Machinery. ISBN 978-1-4503-5552-0. doi: 10.
1145/3219819.3219890. URL https://doi.org/10.1145/3219819.3219890.

173. J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in
deep neural networks? In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’14, pages 3320–3328,
Cambridge, MA, USA, Dec. 2014. MIT Press.

174. Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph Contrastive
Learning with Augmentations, Apr. 2021. URL http://arxiv.org/abs/2010.

13902. arXiv:2010.13902 [cs].

175. J. Yu, T. Xu, Y. Rong, Y. Bian, J. Huang, and R. He. Graph Information
Bottleneck for Subgraph Recognition, Oct. 2020. URL http://arxiv.org/

abs/2010.05563. arXiv:2010.05563 [cs, stat].

176. S. Yun, S. Kim, J. Lee, J. Kang, and H. J. Kim. Neo-GNNs: Neighborhood
Overlap-aware Graph Neural Networks for Link Prediction. Nov. 2021. URL
https://openreview.net/forum?id=Ic9vRN3VpZ.

177. M. Zhang and Y. Chen. Weisfeiler-Lehman Neural Machine for Link Prediction.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 575–583, Halifax NS Canada, Aug.
2017. ACM. ISBN 978-1-4503-4887-4. doi: 10.1145/3097983.3097996. URL
https://dl.acm.org/doi/10.1145/3097983.3097996.

178. M. Zhang and Y. Chen. Link Prediction Based on Graph Neural Networks.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.

cc/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf.

179. M. Zhang and P. Li. Nested Graph Neural Networks, 2021. URL https:

//arxiv.org/abs/2110.13197.

180. M. Zhang, Z. Cui, S. Jiang, and Y. Chen. Beyond link prediction: Predicting
hyperlinks in adjacency space. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

258

http://arxiv.org/abs/2202.13538
https://doi.org/10.1145/3219819.3219890
http://arxiv.org/abs/2010.13902
http://arxiv.org/abs/2010.13902
http://arxiv.org/abs/2010.05563
http://arxiv.org/abs/2010.05563
https://openreview.net/forum?id=Ic9vRN3VpZ
https://dl.acm.org/doi/10.1145/3097983.3097996
https://proceedings.neurips.cc/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf
https://arxiv.org/abs/2110.13197
https://arxiv.org/abs/2110.13197

181. M. Zhang, Z. Cui, M. Neumann, and Y. Chen. An End-to-End Deep Learning
Architecture for Graph Classification. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1), Apr. 2018. ISSN 2374-3468. doi: 10.1609/aaai.
v32i1.11782. URL https://ojs.aaai.org/index.php/AAAI/article/view/

11782. Number: 1.

182. M. Zhang, P. Li, Y. Xia, K. Wang, and L. Jin. Labeling Trick: A Theory of Using
Graph Neural Networks for Multi-Node Representation Learning. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. W. Vaughan, editors,
Advances in Neural Information Processing Systems, volume 34, pages 9061–
9073. Curran Associates, Inc., 2021. URL https://proceedings.neurips.

cc/paper/2021/file/4be49c79f233b4f4070794825c323733-Paper.pdf.

183. S. Zhang, H. Chen, X. Sun, Y. Li, and G. Xu. Unsupervised Graph Poisoning
Attack via Contrastive Loss Back-propagation. In Proceedings of the ACM Web
Conference 2022, pages 1322–1330, Apr. 2022. doi: 10.1145/3485447.3512179.
URL http://arxiv.org/abs/2201.07986. arXiv:2201.07986 [cs].

184. X. Zhang, J. Zhao, and Y. LeCun. Character-level Convolutional Networks
for Text Classification, Apr. 2016. URL http://arxiv.org/abs/1509.01626.
arXiv:1509.01626 [cs].

185. T. Zhao, G. Liu, D. Wang, W. Yu, and M. Jiang. Learning from Coun-
terfactual Links for Link Prediction. In K. Chaudhuri, S. Jegelka, L. Song,
C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings of the 39th In-
ternational Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 26911–26926. PMLR, July 2022. URL
https://proceedings.mlr.press/v162/zhao22e.html.

186. T. Zhao, W. Jin, Y. Liu, Y. Wang, G. Liu, S. Günnemann, N. Shah, and
M. Jiang. Graph Data Augmentation for Graph Machine Learning: A Survey,
Jan. 2023. URL http://arxiv.org/abs/2202.08871. arXiv:2202.08871 [cs].

187. C. Zheng, B. Zong, W. Cheng, D. Song, J. Ni, W. Yu, H. Chen, and W. Wang.
Robust Graph Representation Learning via Neural Sparsification. In Proceedings
of the 37th International Conference on Machine Learning, pages 11458–11468.
PMLR, Nov. 2020. URL https://proceedings.mlr.press/v119/zheng20d.

html. ISSN: 2640-3498.

188. Q. Zheng, X. Xia, K. Zhang, E. Kharlamov, and Y. Dong. On the distribution
alignment of propagation in graph neural networks. AI Open, 3:218–228, Jan.
2022. ISSN 2666-6510. doi: 10.1016/j.aiopen.2022.11.006. URL https://www.

sciencedirect.com/science/article/pii/S2666651022000213.

189. Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. Random Erasing
Data Augmentation, Nov. 2017. URL http://arxiv.org/abs/1708.04896.
arXiv:1708.04896 [cs].

259

https://ojs.aaai.org/index.php/AAAI/article/view/11782
https://ojs.aaai.org/index.php/AAAI/article/view/11782
https://proceedings.neurips.cc/paper/2021/file/4be49c79f233b4f4070794825c323733-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4be49c79f233b4f4070794825c323733-Paper.pdf
http://arxiv.org/abs/2201.07986
http://arxiv.org/abs/1509.01626
https://proceedings.mlr.press/v162/zhao22e.html
http://arxiv.org/abs/2202.08871
https://proceedings.mlr.press/v119/zheng20d.html
https://proceedings.mlr.press/v119/zheng20d.html
https://www.sciencedirect.com/science/article/pii/S2666651022000213
https://www.sciencedirect.com/science/article/pii/S2666651022000213
http://arxiv.org/abs/1708.04896

190. H. Zhou, J. Lan, R. Liu, and J. Yosinski. Deconstructing Lot-
tery Tickets: Zeros, Signs, and the Supermask. In Advances in
Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/hash/

1113d7a76ffceca1bb350bfe145467c6-Abstract.html.

191. T. Zhou, L. Lü, and Y.-C. Zhang. Predicting missing links via local information.
The European Physical Journal B, 71(4):623–630, 2009. Publisher: Springer.

192. Y. Zhou, G. Kutyniok, and B. Ribeiro. OOD Link Prediction Generaliza-
tion Capabilities of Message-Passing GNNs in Larger Test Graphs, 2022. URL
https://arxiv.org/abs/2205.15117.

193. Q. Zhu, N. Ponomareva, J. Han, and B. Perozzi. Shift-Robust GNNs: Over-
coming the Limitations of Localized Graph Training data. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. W. Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34, pages 27965–27977. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/

2021/file/eb55e369affa90f77dd7dc9e2cd33b16-Paper.pdf.

194. X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaus-
sian fields and harmonic functions. In Proceedings of the Twentieth International
Conference on International Conference on Machine Learning, ICML’03, pages
912–919, Washington, DC, USA, Aug. 2003. AAAI Press. ISBN 978-1-57735-
189-4.

195. Z. Zhu, Z. Zhang, L.-P. Xhonneux, and J. Tang. Neural bellman-ford networks:
A general graph neural network framework for link prediction. Advances in
Neural Information Processing Systems, 34, 2021.

196. D. Zügner, A. Akbarnejad, and S. Günnemann. Adversarial Attacks on Neural
Networks for Graph Data. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, KDD ’18,
pages 2847–2856, New York, NY, USA, 2018. Association for Computing Ma-
chinery. ISBN 978-1-4503-5552-0. doi: 10.1145/3219819.3220078. URL https:

//doi-org.proxy.library.nd.edu/10.1145/3219819.3220078. event-place:
London, United Kingdom.

This document was prepared & typeset with pdfLATEX, and formatted with
nddiss2ε classfile (v3.2017.2[2017/05/09])

260

https://proceedings.neurips.cc/paper/2019/hash/1113d7a76ffceca1bb350bfe145467c6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1113d7a76ffceca1bb350bfe145467c6-Abstract.html
https://arxiv.org/abs/2205.15117
https://proceedings.neurips.cc/paper/2021/file/eb55e369affa90f77dd7dc9e2cd33b16-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/eb55e369affa90f77dd7dc9e2cd33b16-Paper.pdf
https://doi-org.proxy.library.nd.edu/10.1145/3219819.3220078
https://doi-org.proxy.library.nd.edu/10.1145/3219819.3220078

	Abstract
	Contents
	Figures
	Tables
	Acknowledgments
	Chapter 1: Introduction
	Part I: Robust GNNs
	Chapter 2: Robust GNNs by alleviating dataset shift
	2.1 Overview
	2.2 Introduction
	2.3 Related work
	2.4 A proposed unified framework for link prediction
	2.4.1 Preliminary
	2.4.2 Subgraph link prediction

	2.5 FakeEdge: Mitigates dataset shift in subgraph link prediction
	2.5.1 Dataset shift
	2.5.2 Proposed methods
	2.5.3 Expressive power of structural representation

	2.6 Experiments
	2.6.1 Experimental setup
	2.6.2 Results
	2.6.3 Further discussions
	2.6.4 Distribution gap between the training and testing
	2.6.5 Dataset shift with deeper GNNs
	2.6.6 Heuristic methods with FakeEdge

	2.7 Conclusion

	Chapter 3: Robust GNNs by data augmentation
	3.1 Overview
	3.2 Introduction
	3.3 Preliminary
	3.4 Proposed framework: CORE
	3.4.1 Complete stage: inflating missing connections
	3.4.2 Reduce stage: pruning noisy edges
	3.4.3 Implementation of the Reduce stage.
	3.4.4 Theoretical analysis

	3.5 Experiments
	3.5.1 Experimental setup
	3.5.2 Experimental results
	3.5.3 Different DAs for different target links
	3.5.4 Additional ablation studies

	3.6 Conclusion

	Part II: Efficient GNNs
	Chapter 4: Efficient link-level representation with node-level complexity
	4.1 Overview
	4.2 Introduction
	4.3 Preliminaries and Related Work
	4.4 Can Message Passing count Common Neighbor?
	4.4.1 Estimation via Mean Squared Error Regression
	4.4.2 Estimation capabilities of GNNs for link predictors
	4.4.3 Multi-layer message passing

	4.5 Method
	4.5.1 QO vectors construction
	4.5.2 Structural feature estimations
	4.5.3 More scalable estimation

	4.6 Experiments
	4.6.1 Datasets, baselines and experimental setup
	4.6.2 Results
	4.6.3 Model size and inference time
	4.6.4 Estimation accuracy
	4.6.5 Extended ablation studies

	4.7 Conclusion

	Chapter 5: Efficient GNNs without gradient descent optimization
	5.1 Overview
	5.2 Introduction
	5.3 Preliminaries and Related Work
	5.4 Unpacking What GNNs Learn on Text-Attributed Graphs
	5.4.1 Quasi-orthogonal node attributes
	5.4.2 What SGC learns
	5.4.3 What GCN learns

	5.5 Method
	5.5.1 Building the Weight Matrix
	5.5.2 A View from Linear Regressions

	5.6 Experiments
	5.6.1 Experimental setups
	5.6.2 Results
	5.6.3 Trained vs Trainless weight matrix
	5.6.4 Varying attribute dimensions
	5.6.5 Beyond homophilous graphs
	5.6.6 Training efficiency

	5.7 Conclusion

	Part III: Adaptable GNNs
	Chapter 6: Adapting pretrained GNNs to new graph
	6.1 Overview
	6.2 Introduction
	6.3 Can one model fit all?
	6.3.1 Empirical evaluation on transferability
	6.3.2 Conflicting patterns across graphs
	6.3.3 Contextualizing Link Prediction

	6.4 Universal Link Predictor
	6.4.1 Query and in-context links
	6.4.2 Encoding ego-subgraphs
	6.4.3 Link prediction with context
	6.4.4 Pretraining objective

	6.5 Related work
	6.6 Experiments
	6.6.1 Experimental setup
	6.6.2 Primary results
	6.6.3 The inner mechanism of UniLP
	6.6.4 Effectiveness of in-context links' size
	6.6.5 Visualization of the link representation
	6.6.6 Synthetic graphs
	6.6.7 Diversifying context
	6.6.8 Varying positive-to-negative ratios of in-context links

	6.7 Conclusion

	Chapter 7: Adapting GNNs to relational database
	7.1 Overview
	7.2 Introduction
	7.2.1 Problem statement
	7.2.2 Related Works
	7.2.3 Challenges and Contributions

	7.3 Txn-Bert: Text Encoder trained from scratch
	7.3.1 Unique Linguistic Characteristics of Transaction Data
	7.3.2 Training the tokenizer
	7.3.3 Training the transformer model

	7.4 Rel-Cat: Modeling relations within database
	7.4.1 Build a heterogeneous graph from a relational database
	7.4.1.1 Conversion overview

	7.4.2 Conversion details
	7.4.2.1 Transform to a link prediction task

	7.4.3 Model the heterogeneous graph
	7.4.3.1 Two-hop connections for transaction nodes

	7.4.4 Training objective
	7.4.4.1 Weighted negative sampling
	7.4.4.2 Distribution shift mitigation

	7.4.5 Scalability and practical designs
	7.4.5.1 Reducing neighborhood size
	7.4.5.2 Top K Nearest Neighbor

	7.5 Experiments
	7.5.1 Experimental setup
	7.5.1.1 Dataset
	7.5.1.2 Experimental settings

	7.5.2 Results
	7.5.3 Ablation Studies
	7.5.4 Seen vs Unseen Category in a Company's history
	7.5.4.1 Time complexity

	7.6 Conclusion

	Chapter 8: Conclusion and future directions
	Appendix A: FakeEdge: Alleviate Dataset Shift in Link Prediction
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Details about the baseline methods
	A.4 Benchmark dataset descriptions
	A.5 Results measured by Hits@20 and statistical significance of results
	A.6 FakeEdge with extremely sparse graphs
	A.7 Concatenation as another valid Edge Invariant subgraph embedding
	A.8 Dataset shift vs expressiveness: which contributes more with FakeEdge?
	A.9 Limitation

	Appendix B: CORE: Data Augmentation for Link Prediction via Information Bottleneck
	B.1 Related works
	B.1.1 Comparison to GSAT

	B.2 Implementation details
	B.2.1 Marginal distribution
	B.2.2 Awareness of edges scores from the Complete stage
	B.2.3 Augmentation during inference
	B.2.4 Nodewise sampling
	B.2.5 Hyperparameter details
	B.2.6 Software and hardware details
	B.2.7 Time complexity

	B.3 Supplementary experiments
	B.3.1 Baseline methods
	B.3.2 Benchmark datasets
	B.3.3 More ablation study
	B.3.4 Parameter sensitivity
	B.3.5 CORE with GCN and SAGE as backbones
	B.3.6 Complete stage only considering node pairs with common neighbors

	B.4 Variational bounds for the GIB objective in Equation 3.4 and Equation 3.5
	B.5 Proof for Theorem 3
	B.6 Limitations

	Appendix C: Pure Message Passing Can Estimate Common Neighbor for Link Prediction
	C.1 Efficient inference at node-level complexity
	C.2 Estimate triangular substructures
	C.2.1 Method
	C.2.2 Experiments

	C.3 Experimental details
	C.3.1 Benchmark datasets
	C.3.2 More details in baseline methods
	C.3.3 Evaluation Details: Inference Time
	C.3.4 Software and hardware details
	C.3.5 Time Complexity
	C.3.6 Hyperparameters

	C.4 Exploring Bag-Of-Words Node Attributes
	C.4.1 Node Attribute Orthogonality
	C.4.2 Role of Node Attribute Information
	C.4.3 Expanding QO Vector Dimensions

	C.5 Additional experiments
	C.5.1 Node label estimation accuracy and time
	C.5.2 Model enhancement ablation
	C.5.3 Structural features ablation
	C.5.4 Parameter sensitivity

	C.6 Theoretical analysis
	C.6.1 Proof for Theorem 4
	C.6.2 Proof for Theorem 5
	C.6.3 Proof for Theorem 6

	C.7 Limitations

	Appendix D: You do not have to train Graph Neural Networks at all on text-attributed graphs
	D.1 More strategical design
	D.2 Supplementary experiments
	D.2.1 Statistics of benchmark datasets
	D.2.2 Baseline model details
	D.2.3 Software and hardware details
	D.2.4 Hyperparameter selections
	D.2.5 Parameter Sensitivity
	D.2.6 Experimental details on heterophilous graphs

	D.3 Limitations

	Appendix E: Universal Link Predictor By In-Context Learning on Graphs
	E.1 Experimental details
	E.1.1 Pretrain and test benchmarks
	E.1.2 Pretraining the Models
	E.1.3 Software and hardware details

	E.2 Theoretical analysis
	E.2.1 More discussions about the connectivity patterns
	E.2.2 Proof for Theorem 7

	Appendix F: Adapting GNNs to Relational Database
	F.1 Technical details
	F.1.1 Txn-Bert configuration
	F.1.2 Inference
	F.1.3 Software and Hardware details

	F.2 Supplementary experiments
	F.2.1 Prediction cascade

	Bibliography

